Error Amplifier with Forced Equilibrium Adaptor |
Figure 1. Rectangular type output characteristics for a unipolar power supply: (a) Ideal form, (b) Real - dynamic formEout, Iout = Actual values for output voltage and current;Eprog, Iprog = Programming values for output voltage and current Rload = Load resistance CV, CC = Constant Voltage and Constant Current mode CR = Critical mode
Figure 2 represents a common configuration used for linear type unipolar power supplies. A quick examination of the schematic reveals why the transitions between the two modes produce the transients depicted in Figure 1(b). The output voltage of the controlling error amplifier has a value of few volts, as determined by the configuration of the pass element and the value of the current sensing resistor (Rs), while the output voltage of the other error amplifier, which is out of control, is very close to the +Eaux rail. Each time control is switched between them, the output voltage of each error amplifier must swing from one value to the other. These swings are delayed by several factors, Figure 2. Functional schematic of a linear unipolar power supply with rectangular output characteristics.PE = Pass Element (Power Element)Ep = Primary DC Source VEA, CEA = Voltage and Current Error Amplifiers VR, CR = Voltage and Current Reference Circuits VFC, CFC = Voltage and Current Feedback Circuits EOR = Exclusive OR Circuit Rs = Current Sensing Resistor OF = Output Filter
The transients described above are significant for power supplies with a small value output capacitor, that produces a short equivalent time constant, compared with the other time constants in the supply. This kind of power supply could be a power amplifier or a regular power supply designed to work in two modes: "fast mode," with a small value output filter capacitor and "slow mode," with a large value output filter capacitor. When working in "slow mode" output transients are "absorbed" by the output filter capacitor, if it is big enough, which spares the load. However, the stress remains on the power supply, because, during transient, the current through the power element reaches an uncontrolled very high value when the output voltage of the power supply goes from a low to high value. Figure 3 illustrates the error amplifier with Forced Equilibrium Adaptor, that significantly improves the power supply behavior by minimizing transients appearing at the output when the control of the power supply changes from one error amplifier to the other. The circuit functions as follows: when the error amplifier is in control, IC1 - the Basic Error Amplifier (BEA) regulates the potential at the pass element (PE) input and eventually the output signal (voltage or current). Current through R11 is sunk partially, depending of the structure of the pass element, by IC1. The voltage drop on R5, VR5 >> VOS (VOS = offset input voltage of IC101), is positive with respect to the input of IC101 of the Forced Equilibrium Adaptor (FEA) It is sufficient to force its output to the positive rail of the auxiliary supply (+Eaux). At this time diode D101 is off, so the Forced Equilibrium Adaptor will not affect the equilibrium at the input of the error amplifier when the main loop is closed: Va = 0V and then, Vfbk / R1 = Vprog / R2. Thus with D101 off, the Forced Equilibrium Adaptor will not interfere with the normal operation of the regulating loop, performed by the controlling error amplifier. The solid line above R5 in Figure 3 represents the current flowing through R5 in this situation. Because the other error amplifier has a similar structure, we can apply similar reasoning while referring to Figure 3 and the schematic of a generic power supply shown in Figure 2. In this case, because Vfbk / R1 < Vprog / R2, the potential Va will be positive, forcing the output of IC1 toward the positive rail of the auxiliary supply. However, then the current through R5 sourced by IC1 through R5 and R104 toward -Eaux, (broken line below R5 in Figure 3), tries to change direction, IC101, upon receiving a negative input, it changes the polarity of its output from positive to negative, thus forward biasing diode D101. With diode D101 ON, IC101 will close a local loop around the basic error amplifier IC1 due to the huge open-loop amplification factor, keeping VR5 = VOS. Figure 3. Schematic of the Error Amplifier with Forced Equilibrium Adaptor.PE = Pass Element (Power Element)BEA = Basic Error Amplifier FEA = Forced Equilibrium Adaptor EOR = Exclusive OR Circuit -Vfbk = Feedback Signal +Vprog = Programming (reference) Signal +Eaux, -Eaux = Auxiliary internal power supplies Va = Equilibrium node voltage Vf = Forcing equilibrium voltage
At this time the adaptor circuit forces equilibrium, from the point of view of the overall loop, at the input of the error amplifier. So again, Va = 0V, but now Vf / R103 + Vfbk / R1 = Vprog / R2. The values of R104 and R5 are chosen such that Eaux / R104 > VOS / R5. So, even if the error amplifier does not control the overall loop through its corresponding diode (D1 or D2), a small current will flow through D1 or D2, from +Eaux through R11 toward -Eaux The result is the diode is forward biased so that it is ready to work when the error amplifier takes control. Furthermore, the voltage drops across the local feedback capacitors C1 and C2 in Figure 2, placed around the error amplifiers, are almost equal; the difference is merely 0.1 to 0.2V, given by the difference between the voltage drop across the diodes D1 and D2, where the "controlling" diode conducts more current than the "non-controlling" diode. This is very important, because it minimizes the time required to update the charges across the feedback capacitors when the control is switched between error amplifiers. To obtain maximum performance from the circuit, IC101 should be a high slew rate type op amp, with very small bias currents. The amplifier IC1 can remain the one initially chosen for the application. Generally, it must be an op amp with very small bias currents, input offset voltage and input offset current. No special restrictions are imposed on the slew rate. Zener diode D102 limits the excursion at the output of the error amplifier upon power-on of the circuit and when the output is programmed from a high value to a low value. Figures 4 and 5 compare the output current and voltage from a power supply of 2000VDC / 0.1ADC (adjustable from zero to the nominal values), working in "fast mode," when the power supply is driven from CV to CC mode. The waveforms are recorded for the power supply using regular error amplifiers (Figures 4(a) and 5(a)) and using Error Amplifiers with Forced Equilibrium Adaptor (Figures 4b and 5b).
Figure 4. Output current (CH1 = 20mA/cm) and output voltage (CH2 = 50V/cm) for a power supply driven from CV to CC. (a) Regular error amplifiers, (b) Error amplifiers with forced equilibrium adaptors.Load: 5.4 kohms;Initial programming: Eprog = 0Vdc, Iprog = 20mADC; Initial status: Eout = 0Vdc, Iout = 0mADC, Voltage mode Final programming: Eprog = 133Vdc, Iprog = 20mAdc Final status: Eout = 108Vdc, Iout = 20mAdc, Current mode
Observing the waveforms from Figures 4(a) and 5(a), it can be seen that, for regular error amplifiers, the transient at the output could be big - almost two times bigger than the programmed output (see Figure 5a)It is strongly dependent (amplitude and duration) on the difference between the new programming value and the final output value. The waveforms from Figures 4(b) and 5(b) show that the transients are completely removed by the error amplifiers with the Forced Equilibrium Adaptor. From the above description, the advantages of the error amplifier with Forced Equilibrium Adaptor could be summarized as:
Figure 5. Output current (CH1 = 20mA/cm) and output voltage (CH2 = 50V/cm) for a power supply driven from CV to CC: (a) Regular error amplifiers, (b) Error amplifiers with forced equilibrium adaptors.Load: 5.4 kohmsInitial programming: Eprog = 0Vdc, Iprog = 20mAdc Initial status: Eout = 0VDC, Iout = 0mADC, Voltage mode Final programming: Eprog = 203VDC, Iprog = 20mADC Final status: Eout = 108VDC, Iout = 20mADC, Current mode
|
KEPCO, INC. • 131-38 SANFORD AVENUE •
FLUSHING, NY. 11355 U.S.A.
TEL (718) 461-7000 • FAX (718) 767-1102
www.kepcopower.com • email: hq@kepcopower.com