OPERATOR MANUAL

BIT 4886
DIGITAL INTERFACE CARD

WITH GPIB AND RS 232 CAPABILITY

MODEL
KEPCO INC.
An ISO S001 Company. B IT 4886

INTERFACE CARD

IMPORTANT NOTES:

1) This manual is valid for the following Firmware Versions:
FIRMWARE VERSION NOTE.
2) A Change Page may be included at the end of the manual. All applicable changes and

revision number changes are documented with reference to the equipment serial num-
bers. Before using this Instruction Manual, check your equipment serial number to identify
your model. If in doubt, contact your nearest Kepco Representative, or the Kepco Docu-
mentation Office in New York, (718) 461-7000, requesting the correct revision for your par-
ticular model and serial number.

3) The contents of this manual are protected by copyright. Reproduction of any part can be
made only with the specific written permission of Kepco, Inc.

Data subject to change without notice.

@EKEPCCL@

©2019, KEPCO, INC S
P/N 243-1303-r28 —=——== THE POWER SUPPLIER™

KEPCO, INC. ® 131-38 SANFORD AVENUE @ FLUSHING, NY. 11355 U.S.A. ® TEL (718) 461-7000 ® FAX (718) 767-1102
email: hg@kepcopower.com ® World Wide Web: www.kepcopower.com

TABLE OF CONTENTS

SECTION PAGE

SECTION 1 - INTRODUCTION

1.1 S YoTo] o Lo 1Y = a U T | SRS SPTIP

1.2 General Description..................

121 Measurements....................

1.2.2 Enhanced Operation

1.3 Sy o L=T ot T 1 o] o SOOI
131 BIT 4882 COMPALIDIITY.ccveetiiiieeeie ittt 1-4
SECTION 2 - INSTALLATION

2.1 UNPACKiNG @nd INSPECTIONeiiiiiiiiiiei ettt ettt e e et e e e s e bbbt e ee e e asbbb e e e e e aeeeesasnbeeeeeaann

2.2 St STAM-UP DEIAUILSeiiiii ettt e e s et e e e e e e tbbr e e e e s e ate e e sntr et e e e s entbaeaeeas
221 Set (GPIB) DEVICE AUUIESSeiiteieiiiee ettt ettt et et rs e e sh e e et et sb et e s b e e s beennreeennneeas
222 Power SUpPIY [dENLIfICALIONccoiiiiiiie et e e

23 Installation of Interface Card into the BOP

2.4 INPUE/OULPUL SIGNAUS ...ttt ettt e e e ettt e e e e e bbbt e e e e e abb bt e e e ebe e e e e e abneeeeesannenas

25 (€11 S o] o g l=Tot i [o] 0 F PO P PP PPTT ORI

2.6 RS 232 Connections

2.7 Initial Check-out Procedure

SECTION 3 - CALIBRATION

3.1 EQUIDMENT REGUITEA. ...ttt et b e ekt e e s e e sr e e e ab e e e snneeennneeas 3-1
3.2 Calibration of BIT 4886 INterface Card............ooui it e et e e e e ennaeeeee s 3-2
3.21 Manual calibration

3.2.2 Calibration Using IVI Driver

3.2.2.1 Setup..s

3.2.2.2 Main Control Panel

3.2.23 Calibration Controls

3.224 Calibration Procedure

SECTION 4 - OPERATION

41 (CT=T =T - OO OO PUPTOPPPP
41.1 Programming Techniques to Optimize Power Supply performance

41.11 Setting BOP Voltage and Current LimitS.........ccccceeeeviiieee e

41.1.2 AULOMALIC RANGE OPEIALION.eeieitieeeiiti ettt e s b e e nrr e e e ssb e e sneeesnneees
4113 Using the BIT 4886 to Produce a Software-timed Ramp at the BOP Output...........c.ccceeevineennee. 4-2
41.2 Making Sure the Previous Command is Complete

4.2 Initialization Of the BIT 4886 Cardcuuiiiiiiiiiiiee ettt e et e e s eeneeas
42.1 Initialization using CVI Driver - GPIB POt ONYueiiiiiiiiiiiii e
422 Initialization using SCPI Commands and GPIB POItcccuuiiiiiiiiiiie e a e
423 Initialization using SCPI Commands and RS 232 Port

4.2.4 PasSSWOrd SELUP.......ccooiuiiiiiiieiiie e

4.3 LTI T I PP UPPPSPTN
431 POWET-UP TOST ..ttt et ettt e e e e e e e e e e s e e e bbb e b e e ettt e e e e e eenen e anrnnne
43.2 Confidence Test........cccc.....

4.3.3 BOP testcocovvviiiiiiii e,

4.4 IEEE 488 (GPIB) Bus Protocol

4.5 RS232-C OPEIALIONeieittee ettt ettt e st ettt et e e ek et e e he e e ek e e e aa b et e e b e e e s be e e e abbe e e nneeenenee s
45.1 Y=t I N1 0=T 5 = Vo SRS
45.2 RS 232 Implementation

45.2.1 Echo Mode.....................

4522 XON XOFF Method

45.2.3 Isolating RS 232 Communication Problems

453 Using SCPI commands for RS 232 COMMUNICALION.ccviiiiiiiiiiiiee ettt 4-16
4.6 SCPI Programming 4-16
46.1 SCPI MBSSAGES ... ittt ettt et e e e e e e e e e e e e e e et et be e e e et ettt eeeeeaaeeeeeaaaa e e e bhbnbn b e berne e e e eaaaeaeeaeaeaaaan 4-16
4.6.2 Common COMMANAS/QUETIESuuuieitiiiiiiieiet et e e e e e e e e e e e e s e et eeereeaaaaaaeaaeaassasaassnssrrraraseeeeeesaan 4-16

BIT 4886120419 i

TABLE OF CONTENTS

SECTION PAGE
46.3 SCPI Subsystem Command/QUETY STIUCLUIEcoiuuriiiieei i et ee e et e e e eaeee e e anneeeas 4-17
46.3.1 INITIALE SUDSYSTEIM ...ttt e e e ettt e e e eab b b e e e e e e sabbe e e e e e annbeeeas 4-17
4.6.3.2 MEASUIE SUDSYSIEIM ...eiiiiiiiiiiiiie ettt e e e e e e et e e e e e e et e e e e s st b e e e e sassbaeeeeesnsbaeeeeesnsraeeas 4-18
4.6.3.3 [Source:]Voltage and [Source:JCurrent SUDSYSIEMS..........ceveiiiiiiiiie i 4-18
46.34 Output Subsystem

4.6.3.5 List Subsystem..........cccccceevennnen.

46.35.1 ReqUIred LIST COMMANGSccciiiiiiiiee ettt ettt ie e e ettt e e e e ettt e e e et e e e e e e saebeeaaesateeeaaesaanneees
4.6.3.5.2 Other Required Commands

4.6.3.5.3 Other Useful Commands

4.6.3.5.4 Optional Commands.............

4.6.3.6 Status Subsystemcceee.ee.

4.6.3.7 SYSEM SUDSYSIEIM ...ttt ettt ettt e bt e r e e as e e ssb e e saneeeanbreenaes
46.4 Program MESSAQGE SITUCTUIEeiiiiiiiiieee ettt e e e e e e e e e e e e s e s e s bbb e e et e e e eeeaeaeennnnnnnnnneee
46.4.1 Keywordccceevieiiiiiiieiiiieeeeee

46.4.2 Keyword Separator

4.6.4.3 Query Indicator............

4.6.4.4 D 1= OO TO PP PP PPPPPPPP
4.6.4.5 (D= = RS =T 0 L= L= (o] (OO R RPN
4.6.4.6 Message Unit Separator

46.4.7 Y0 T0] ST o 1= Tox =T S PO PPPPP PP
4.6.4.8 (eSS Vo [=T 441 g P Lo SO OTRP PP

4.6.5 Understanding The Command STTUCLUIEociiiiiiieiie ettt e e e e e e e e e st e e e s saraeeae s 4-22
4.6.6 Program Message Syntax Summary

4.6.7 SCPI Program Example.........cccccoveennes

4.7 (=g gF= T lo=To @] 1= = io] o FA R SUUPRRRN
47.1 =g (o] g D=1 (=T ox 1T o F OO PPPTUPTPPPN
4.7.2 Limit Channel Controlccceeee.

4.7.3 Using and Saving System Variables..........ccccuiiiiiiiiiiii e
4.7.4 Flash Memory EEPROM OPEIaAtiONcccuuiiiiieeiiiieiiiee ittt sre ettt eesanneenae 4-28
47.4.1 CaliDration STOTAGE ...co.ueeiiieiiee ittt ettt e e e et nae 4-32

APPENDIX A - SCPI COMMON COMMAND/QUERY DEFINITIONS

A-1 L[] goTo [Te1 o] o I OO T T TP PP R P ROV P PRP TP
A2 *CLS — Clear Status Commandcccecvverieeerninennn

A3 *ESE — Standard Event Status Enable Command

A4 *ESE? — Standard Event Status Enable QUETY............oiiiiiiiii ettt
A5 *ESR? — Event StatuS REGISIEI QUEIYcoiiiiiiiee ittt ettt ettt e et e e e st e e e e e saneeeesnnnee s
A.6 *IDN? — [dentifiCatioN QUETYiiii ettt e et e e e e et et e e e s e bbb e e e e snbbeeee e e annneeas
A7 *OPC — Operation Complete Command

A.8 FOPT? — OPONS QUETY ...ttt ettt ettt ettt et e st e e s bt e e b et e ek bt e e aabe e e sne e e asbb e e ebeesaneeeanbbeenans
A9 *RCL — Recall Command

A.10 *RST — Reset Command

A1l * SAV — Save Command

A.12 *SRE — Service Request Enable Command

A.13 *SRE? — Service Request ENable QUETYooio ittt e
A.l14 *STB? — Status Byte REQISIEr QUETYcoiueiiiiiieeiiii ettt ettt e st e s re e st e e
A.15 *TRG — Trigger Command

A.16 *TST? — Self Test Query.......

A.l7 *WAI — Wait-To-Continue Command

APPENDIX B - SCPI COMMAND/QUERY DEFINITIONS

ii BIT 4886120419

SECTION

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29
B.30
B.31
B.32
B.33
B.34
B.35
B.36
B.37
B.38
B.39
B.40
B.41
B.42
B.43
B.44
B.45
B.46
B.47
B.48
B.49
B.50
B.51
B.52
B.53
B.54
B.55
B.56
B.57

TABLE OF CONTENTS

T oo (8 ox 1T] o SR PPPURRRN
NUMEFICAI VAIUBS ...ttt e ettt e e e ettt e e e e e s aab b e e e e s snt b e e e e e e ntbeeee e s
CALibrate:CPRotect Command
CALIDrate:STATUS COMMANcc.uiiiiiiieiiiiiie ittt ettt er et r e b st nr et e ere e e
CALIDrate[:STATUS]? QUETY ...eeiiiiiiiititeeiteee ettt ettt ekttt e e s bt e ab e e s e e ssb e e e abb e e s anneeensneeeabneeans
CALibrate:CURRent Command
CALIDrate:DATA COMIMANGciiiiiitiiiia et e ettt e e et teeae e e e tbeeeaeaaanteeeaaesabaeeeaeeaasneeeeasaannsseesannseneaaan
CALIDrate:DPOT COMMENTeeiiiiiiiiiie ettt ettt ettt e e e e e b e e e e e e sae et e e e e asnbs e e e e e e annbeeanntbeeeeenan
CAlLibrate:LCURR Command

CALibrate:LVOLT Command

CALibrate:SAVE Command

CALibrate:VOLTage Command
CALibrate:VPRotect Command
CAlLibrate:ZERO Command............ccccceennn.
INITiate[:IMMediate] Command
INITiate:CONTinuous Command
INITIate:CONTINUOUS QUETYvviiiiiiieriiete ittt ettt et et e ettt e e st e et e et e e e e b e e eab bt e e s e es e e e e nbn e e e nns
MEASUre[:SCALarl:CURRENI[:DC]? QUETYccuuuiiiiiieiiiie ettt ettt ettt
MEASure[:VOLTage][:SCALar][:DC]? Query
OUTPUL[:STATE] COMIMANT.....ceiiiiiiiiiiee ittt ettt ee ettt e e e ettt e e e e e s be et e e e s aabbe e e e e s abbbeeeeeeannnbeeaannbeeeeenan
OUTPUL[:STATE] QUETY ittt ettt ettt ettt ettt e e e ekttt e e e e ek b et e e e e e kbbbt e e e aasbbe e e e e aabeeeeeeannbeneaenan
[SOURCce:JFUNCHION:MODE COMMANGcoiiiiiiiiieeeiiiiiieeeeesiiret e e e ettt e e e s esibasea e s ssnsseeesessnsaaeaesssnsaaneaesan
[SOURCE:JFUNCHON:MODE? QUETYeeieiitie ettt ettt et e et e e nbbe e e ane e
[SOURce:]FUNCtion:MODE:TRIGger
[SOURCce:]JFUNCHION:MODE:TRIGGEI? QUETYeiieiiitiiiiaeeeaitieaeeaaiieeeaeaattaeeaaeaasneseeaeaannsaeeeaeaanneeeeaeaan
[SOURCE:JLIST:CLEAI COMIMANDciiiiiiiiiieeiiiitie ettt e et e e ettt e e s aiba et e e e s aabb e e e e e e anbbeeeeesanbeeeeeean
[SOURce:]LIST:COUNt Command..............
[SOURCce:]LIST:COUNt? Querycccceee....
[SOURce:]LIST:COUNt:SKIP Command
[SOURCE:ILIST:COUNLSKIP? QUETY ...ttt ettt et ekt s e e e e nre s
[SOURCE:ILIST:CURRENE COMIMANT........eeeiiiiiiiiiiiae et ea e e ettt e e e ettt e e e s ebeet e e e e aasaeeeeaeeaannbeeaeaaannbeeeaaan
[SOURce:JLIST:CURReNt? QUETYcovvvrieieeiiiiiieenenn

[SOURce:JLIST:CURRent:POINts? Query
[SOURce:]LIST:DIRection Commandccccccceveuvnnenn.

[SOURCE:ILIST:DIRECHON? QUETY ...cuveuveuierieiieieateetestestestesteseeseesseseaseeseasessessessessessessessessesesssasessessessssenns
[SOURCE:ILIST:DWELI COMMANGcciiiieiiiieiiiie ettt ettt e e sne e
[SOURce:]LIST:DWELI? Query
[SOURCE:ILIST:DWELI:POINIS? QUETYeeiieieeiiiieeee ettt e ettt e e ettt e ettt e e e s sbbe e e e e e e inre e e e e eneeeeeean
[SOURCce:ILIST:GENeration COMIMANTcooiiuiiiieaiiiiiiie ettt ettt et et e e e e s eabbe e e e e s e ineeeeean
[SOURCE:ILIST:GENEIatioON? QUETY ...eiiiiiiiiieeeiieieeeeeeiiittee e e e sttt et e e e ssabaaeeeeeasataeeaessstbeeaeessssaseeeannseneeanan
[SOURCE:]LIST:QUERY COMIMANGceitiieiiiiiiiiiie it sit ettt ettt et e st e e e st ree s nneenneas
[SOURCce:LIST:QUERyY? Query
[SOURCEe:]LIST:SEQUENCE COMMANT.uuiiiiiiiuiiiiia e aiiieeae e ettt e e e e aaseeeae e s asteeeaasaasneeeaeeaanneeeaeeaaneeaeaan
[SOURCE:ILIST:SEQUENCE? QUETY ...eiiiiiiiitieeeeiaittete e e ettt e e ekttt e e s e aasb e e e e e sbbe et e e e s asbbe e e e e e aaanbeeeesabeeeeeaas
[SOURce:]LIST:VOLTage Command..........
[SOURCce:]LIST:VOLTage? QUETYccceeevvvivereeeceiierennn.
[SOURce:]LIST:VOLTage:POINts? Query
[SOURce:]CURRent[:LEVel][:IMMediate][:AMPlitude] Command
[SOURce:]CURRent[:LEVel][:IMMediate][:AMPIitude] QUETYcciiuuiiieiiiiiiee e
[SOURce:]CURRent:MODe Command
[SOURce:]CURRent:MODE? Query........ccccoccuveeeennn.
[SOURce:]CURRent:[:LEVel]RANGe Command
[SOURCce:]CURRENL[:LEVEIIRANGE? QUETYuvviiieeiiiiiiiee e e iitieee e s esiiite e e s esiaaae e e s s sastreaeessnntanaeessnnsraeeaean
[SOURce:]CURRent:[:LEVEl]RANGE:AUTO COMMANGeoiiiriiaiiireniiienieee et
[SOURce:]CURRent[:LEVel] TRIGgered[:AMPlitude] Command....
[SOURce:]CURRent[:LEVel] TRIGgered[:AMPIItUAE]? QUETYcoiiiuuiiieaiiiiiieeeeeiieea e
[SOURce:]VOLTage[:LEVel][:IMMediate][:AMPlitude] Command

BIT 4886120419 iii

SECTION

B.58
B.59
B.60
B.61
B.62
B.63
B.64
B.65
B.66
B.67
B.68
B.69
B.70
B.71
B.72
B.73
B.74
B.75
B.76
B.77
B.78
B.79
B.80
B.81
B.82
B.83
B.84
B.85
B.86
B.87
B.88
B.89
B.90
B.91
B.92

TABLE OF CONTENTS

[SOURce:]VOLTage[:LEVel][:IMMediate][: AMPIIitude]? QUEIYccoiiuriiieeeiiieee e B-16
[SOURCce:]VOLTage:MODE COMMANT.........cutiiiiiiiiieeaiiiiieeeeeaieieee e et ee e e aibeeee e e s sibaeeeessanbreeaeeanneeeaan
[SOURCE:]VOLTAQGE:MODE? QUETYeiiiiiiiiiiieeeeiititeeeesittteeaeeastteeaesassbaateessssssaseaessssaseaeesastseeeearaeeaesan
[SOURce:]lVOLTage[:LEVel:RANGE COMMANT.........cccuviiieeiiiiiiieeeesiiie e e e s siire e e s evrae e e e e ennre e e e e sntreeeas
[SOURCce:]VOLTage:[:LEVEIIRANGE? QUETY ...cccuviiiiuiieeriiee et sttt sttt ettt enis
[SOURce:]VOLTage:[:LEVel]RANGe:AUTO Command
[SOURce:]VOLTage[:LEVel]:TRIGgered[:AMPlitude] Command.............ccooceeereiiiiiieeeeeiiieeee e B-17
[SOURce:]VOLTage:[:LEVel]:TRIGgered[:AMPIitude]? QUEIY.........coiiiiiiiieiaiiiieee e B-18
STATus:OPERation:CONDItioN QUENYcccoviiiiiieiiiiiiieee e

STATus:OPERation:ENABle Command...
STATus:OPERation:ENABIle? Query
STATUS:OPERAION[:EVENL]? QUETY ..ottt stttk esn e e et e
STATUS:PRESEt COMMANGoeiiiiiiiiiie ettt ettt e e e ettt e e e e e st e e e e aanbeeeeaeaansaeeeaeeaanneeeaanneeeeaeaan
STATus:QUEStionable[:EVENTL]? Query

STATus:QUEStionable:CONDition? Query
STATus:QUEStionable:ENABlIe Command
STATUS:QUESHIONADIE:ENABIE? QUEIYeeiiieiiiiiiiee ettt ettt e e e e e e e e e et e e e e e s ensbaeaeesansaeeeaeean
SYSTEMBEEP COMMANTcoiiiiiiiiiiie ittt et e e e e ettt e e e et e e e e e anntbeeeeeannsaeeeeeean
SYSTem:COMMunication:SERia:ECHO Command
SYSTem:COMMunication:SERIal:ECHO? QUETYcoiuuiiiiiiiiiiiiiee ittt
SYSTem:COMMunication:SERial:PACE Command
SYSTem:COMMunication:SERIAI:PACE? QUETYccoiuuiiiiei it e et e e s sitee e e e satae e e e e sntvanaaeantaaaeaae s
SYSTEMIERROI? QUEIYottt ettt e e e e e s e e e e e e e e e e e e et e e e e e annneeeeeeas
SYSTem:ERRor:CODE? Quetry

SYSTem:ERRor:CODE:ALL? Query
SYSTem:PASSwWOrd:CENable COMMANGcuuiiiiiiiiiiiie et e e
SYSTem:PASSword:CDISable Command...............
SYSTem:PASSword:NEW Command...
SYSTem:PASSword:STATe? Quety.....
SYSTEMREMOtE COMMANDuiiiiiiieeiiiiiii ettt e et e e e e et e e e e s stb e e e e e snbeaeeeesansnaeeaeeasnnseeeens
SYSTEMIREMOLE? QUEIY ...ttt ettt ettt et e e e e e e e e e e e e e s s s s a b bbb bbb e e e e e e e e eeaeaeeeeaeseaanannn
SYSTem:SECurity:IMMediate Command.................
SYSTem:SET Command
SYSTEM:SET? QUErY......oooovviiiirininnnns
SYSTem:VERSion? Query

BIT 4886120419

FIGURE TITLE PAGE
1-1 Remotely Controlled Power Supply Configurations Using Kepco Products
2-1 BIT 4886 SWItCh LOCALIONScccuvviiiiiiiiiiiiciieic e e
2-2 Installation of Model BIT 4886 iNtO BOPcccuiiiiiiiiiiiieiie ettt
2-3 |EEE 488 (GPIB) Connector
2-4 RJ45 to DB9 Adapter Wiring
3-1 BOP Power Supply, Internal Calibration Control LOCALIONSceeeiiiieiiiieeiiie et
3-2 CUIrent SNUNE CONNECTIONS ... ueiiiiiie e ee ettt e e e st e s e e st e e e e e e e nne e e nreesanre e esnneeennneeas
3-3 INPUL VISA RESOUICE DESCIIPION ...ciieieeieeiiite ettt ettt ettt e ettt e e e e aab bttt e e e s bbbe e e e e e anbe e e e s abbreeeeeaann
3-4 Main Control Panel, Typical for BOP 100-1M with BIT 4886
3-5 Calibration Controlscccceevieiiiiiieie e
36 PASSWOIT ENMIY ...ttt ettt ekt e e a et s bt e e et et e e b et e e eR b e e e eh et b et e nRn e e b nne e s
K A o] r=To = OF= 1] o] - L1 o] o U O TSP TR PPRRPPPPP
4-1 Programming Example to Verify Previous Command has Completed
4-2 VISA Driver Start-Upccceeeeriieeieeeniiieeeeeeiieeee e
4-3 BIT 4886 Card Initialization using VISA Driver
N & SR A VA 14] o] (=T =T a1 7= L1 [o SRR
4-5 Tree Diagram of SCPI Commands Used with BIT 4886 Interface Cardccccvveeeiiiiiiiee i
4-6 MESSAQE SIIUCTUIEciii ittt e e e e e e s e e
4-7 Typical Example of Interface Card Program Using SCPI Commands
A-1 GPIB COMMANDSooiiiiiiiiiiie ittt
B-1 Using Calibration Commands and QUETIES.utiiiiiuiiiiieiiiiiiee ettt e e et e e e e e sne e e e e e snbneeeeeeanene
B-2 Using LIST Commands for Sawtooth and Triangle Waveforms
B-3 Using LIST Commands and QUENESccoevvrririerieeeiiiie e
B-4 Programming the OULPUL..........eiiiiiiiiii ettt ettt e b e e st e e sne e e s e e e anbe e e nneeesneee s
B-5 Using Recall and TrgQer FUNCHONScooi ettt ee ettt e ettt e e ettt e e e e e tbe e e e e s e sneee e sneeeeaeeaannes
B-6 Using Status Commands and QUETIESuuuiiieiiiiiiiee ettt ee ettt e e ettt e e e et et e e e e saabbe e e e e sanbeeeaesbneeeeeaannne
B-7 Setting the Unit to Remote Mode via Serial (RS 232) POooiiiiiiiiiii e
B-8 Using System Commands and QUETIESeeiiiiuiiieiiiiiieee e e ettt e e s stiaeaeeessibaaeaeesssstseeeeesssbaeeeessabeseeesnnses
BIT 4886120419 v

LIST OF FIGURES

TABLE

Vi

1-1
1-2
1-3
1-4

2-1
2-2
2-3
2-4

3-1
3-2
3-3
3-4

4-1
4-2

4-4
4-5
4-6
A1

A-3
B-1
B-2
B-3
B-5

B-6

LIST OF TABLES

TITLE PAGE
Applicability of BIT 4886 Cards to Specific BOP MOEIScoooiiiiiiiii e 11
BOP Voltage Specifications with BIT 4886 INStalledc..ooiiiiiiiiiiiiii e 1-2
BOP Current Specifications with BIT 4886 INStalledccccoiiiiiiiiiiiiiee e 1-2
SPECIfICALIONS, BIT 4886ueiiiiiiiiiiiiie ettt e e e et e e e e et e e e e e ettt e et e e e sabta et e e e s aatbeeeeeeantbreeaeeaanneees 1-3
Command Differences for BIT 4886 card Configured as BIT 4882ccccciiiiiiiiiiiie e 1-4

Items Supplied
(DY ot o [0 | TSR Y= [=Tod 1o o RSP URPRR
INPUL/OULPUL PIN ASSIGNIMIENTSeiiiiiiiiiiiie ettt ettt e e et e e e s e ae et e e s e aabbeeeeeeanbbbeeeeebeeeeesaasnneeeeeaane
RS232C PORT Input/Output Pin Assignments
RJ45 to DB9 Adapter Wire FUNCLIONSc.coovviieeeiiiiiinee e
Calibration Measurements and Tolerances - Voltage
Calibration Measurements and ToIeranCes - CUMTENTcc.eeiiiiiiiiiee e
SUQQESIEA SENSE RESISLONSeiiiiiiiiiiiee ettt ettt e e et et e e s e et bee e e e e e anbeeeeaeeannaseeaeaaanteeeaatareeaesaanneees
VISA Resource String Corresponding to Interface
Calibration Panel Functions
Built-in test Error Codescccooviiieieeiiiiiiiiieennens
IEEE 488 (GPIB) Bus INterface FUNCHONScooviiiiiiieiiiie et
IEEE 488 (GPIB) Bus Command MOUE MESSAGESccevuiiiriireeiiiieiiiieesiiie st et snee e nnre e e e e e snneees
IEEE 488 (GPIB) Bus Data Mode Messages
Enhanced Operation - ErfOr RESPONSEciiiiiiiiiiaeiiiiiiie ettt et e e e s sibbe e e e e e sbb e e e e e e sanbe e e s annneeeee s
(02111 o] 7= 1110] IS (o] = To [2 TP TSP PPPTP
IEEE 488.2 ComMMAaN/QUETY INUEXvviieiiiiiiiieeeiiiit e e ettt e s ettt e e ettt e e e e e s stbe e e e e s eaba e e e e s stbaeaeassassaeaaaeaanns
Standard Event Status Enable Register and Standard Event Status Register BitSccccceviiieiiieennne A-1
Service Request Enable and Status Byte Register Bits
SCPI Subsystem CommMand/QUETY INAEXeouuuiiiie ettt e e e e et e e e e s anbeeee e e aseeeeeeseenneees
[R D L= T = o] [T PSP PPPPRRTR
LISt SEUENCE TADIE ...ttt ettt e e e ekttt e e e e s anb et e e e e abe e e e e anbb et e e e e annneeeeaas
Operation Condition Register, Operation Enable Register,

and Operation EVENt REQISLEN BitSc.iiiiieiiiiiieiiie ettt e st e s snbeeereeeaneeenas B-18
Questionable Event Register, Questionable Condition Register

and Questionable Condition Enable RegIStEr BILSoccuiiiiiiiiiiiiiie ettt B-19
EITOr MESSAGES ...oiiiiiiiiiii ittt e e et et e oot e et e ettt e e e et e e e e e e e e e e e ae s e e b e e e e e e e e e e e e e aenaa e nanrne B-22

BIT 488612419

S10NA0dd O3d3X ONISN SNOILVHNOIANOD A1ddNS 43IMOd A3T1104LNOD AT3LONTT "T-T 3dNOId

Sd d08

9¢eT g
¢ge lla

a3ag3gn3

LT—VNL-1l18

LT-788Y VAL

Sd LVA

osvy

Sd ISK

B

—

5040800

BIT4886 120419

(vii Blank)/viii

11

1.2

1.2.1

SECTION 1 - INTRODUCTION

SCOPE OF MANUAL

This manual contains instructions for the installation, operation and maintenance of the BIT
4886 Interface Card manufactured by Kepco, Inc, Flushing, NY, U.S.A.

GENERAL DESCRIPTION

The Kepco BIT Card Series were designed as an accessory for the Kepco BOP series bipolar
power supplies. The BIT 4886 card makes it possible to control the BOP output by means of
digital input signals via the IEEE 488.2 bus using SCPI commands (see Figure 1-1). The BIT
4886 card acts as an interface between the digital data bus and the BOP, accepting the digital
input data and converting it to an analog signal, which in turn, controls the BOP output. The BIT
4886 provides full talk/listen capability and is fully compliant with the SCPI programming lan-
guage.

At power-up the BIT 4886 is set to local mode, allowing front panel control of the BOP power
Supply. Upon power up the BIT 4886 performs a reset, establishing the voltage and current out-
put levels to be 0 volts and the output state to be off.

The BIT 4886 is a 16-bit interface card which allows either plus or minus voltage or current out-
put at 15 bits of resolution.

Table 1-1 shows which specific revisions of BOP models are compatible with BIT 4886 cards.

TABLE 1-1. APPLICABILITY OF BIT 4886 CARDS TO SPECIFIC BOP MODELS

MODEL REVISION NO. MODEL REVISION NO.
BOP 20-5M 2 AND LATER BOP 50-8M 10 AND LATER
BOP 20-10M 17 AND LATER BOP 72 3M 10 AND LATER
BOP 20-20M 15 AND LATER BOP 72-6M 14 AND LATER
BOP 36-6M 19 AND LATER BOP 100-1M 24 AND LATER
BOP 36-12M 13 AND LATER BOP 100-2M 15 AND LATER
BOP 50-2M 21 AND LATER BOP 100-4M 14 AND LATER
BOP 50-4M 13 AND LATER BOP 200-1M 7 AND LATER
NOTE: For modification (to accept the BIT 4886 card) of BOP Models with revision numbers that
do not appear in this table, contact Kepco for assistance.

MEASUREMENTS

The readback information for BIT 4886 cards is the average of the last 16 measurements. The
measurement average is valid after a time delay which allows the readings to stabilize, plus 320
milliseconds.

BIT 4886 OPR 120419 1-1

1.2.2 ENHANCED OPERATION

The BIT 4886 card includes the following enhanced operation features: a) advanced control
over the way the unit responds to errors (PAR. 4.7.1), b) advanced limit channel control for

applications such as battery, photocell, and large inductor applications (see PAR. 4.7.2) and c)
ability to save system settings (PAR. 4.7.3).

1.3 SPECIFICATIONS

For voltage and current accuracy specifications of BOP Models with a BIT 4886 card installed,
refer to Tables 1-2 and 1-3, respectively. Table 1-4 lists the specifications for the BIT 4886 card.

TABLE 1-2. BOP VOLTAGE SPECIFICATIONS WITH BIT 4886 INSTALLED

VOLTAGE BOP 100-1M BOP 72-3M BOP 50-2M BOP 36-6M BOP 20-5M
SPECIFICATION BOP 200-1 | BOP 100-2M BOP 72-6M BOP50-4M BOP 36-12 BOP20-10M
BOP 100-4M BOP 50-8M BOP20-20M
High range accuracy 24mVv 12mv 8mVv 6mVv 4mV 2.4mV
Low Range Accuracy * 6mVv 3mv 2mv 1.5mV imVv 0.6mV
Positive Limit Accuracy 2 300mvV 150mVv 100mv 90mvV 75mV 36mvV
Measurement Accuracy 120mv 60mVv 45mV 30mv 24mvV 12mv
NOTES:1. Low range is defined as less than 1/4 of the rated value.
2. Positive limit accuracy applies to limit values from nominal to 2% of nominal voltage value. Negative limit accuracy
is not more than 1.0% of nominal value for voltage.

TABLE 1-3. BOP CURRENT SPECIFICATIONS WITH BIT 4886 INSTALLED

CURRENT BOP MODEL (ARRANGED BY CURRENT CAPABILITY)

SPECIFICATION 20-20M | 36-12M | 20-10M | 50-8M sg:% 20-5M 15000'_44'\:/' 72-3M 1500(;_22'\:/' ;ggjm
High range accuracy 1 20mA 6mMA 5mA 4mA 1.2mA 1ImA 0.5mA [0.36mA | 0.25mA | 0.12mA
Low Range Accuracy 12 1.6mA | 0.5mA 0.3mA | 0.25mA | 0.2mA | 0.15mA | 0.12mA | 0.08mA | 0.06mA | 0.03mA
Positive Limit Accuracy 13| 40mA | 28mA 24mA 20mA | 6mA 5mA 8mA 3mA 2mA 1mA
Measurement Accuracy * 20mA | 14mA 12mA 5mA 3mA | 25mA 2mA 1.5mA 1ImA 0.5mA

value for current.

NOTES: 1. Accuracy specifications apply only after 1 minute warm-up.
2. Low range is defined as less than 1/4 of the rated value
3. Positive limit accuracy is valid from 25% to 100% of I nominal. Negative limit accuracy is not more than 2% of nominal

1-2

BIT 4886 OPR 120419

TABLE 1-4. SPECIFICATIONS, BIT 4886

SPECIFICATION

DESCRIPTION

Output Voltage (Main High Range

Programs BOP to rated value

Channel) Low Range

Programs BOP to 1/4 rated value

Rise and Fall times
(VOLT:MIN to VOLT:MAX)

<100 microseconds

Temperature Coefficient

Full scale:

Zero: High Range:

+ 35 ppm/°C max
+10 ppm/°C max

Low Range: +30 ppm/°C max
Voltage Readback:

High Range + 20uV/°C max

Low Range + 10uV/°C max

Current Readback: +10 ppm/°C max

Optical Isolation

Digital and Analog grounds can be separated by a maximum of 500 Volts.

Digital Input Format

Byte-Serial/IEEE

Power Requirement

Supplied by host power supply

Accuracy

Resolution Main Channel Programming | 15 bits (16 bits including * sign)
Limit Channel Programming | 12 bits
Readback | 15 bits (16 bits including * sign)
Linearity Programming |+ 1 LSB
Readback | £ 2 LSBs
Data Readback Voltage | 0.05% of Max. Voltage

Current

0.05% of Max. Current

List

Step Range

500 microseconds to 10 seconds

Step Accuracy

-5 TO +20 microseconds (See Note 1.)

Number Of Steps

1002

Rise/fall Time

>100 microseconds

Transient

Transient Range

500 microseconds to 10 seconds

Transient Accuracy

—20 TO +1200 microseconds (See Note 1.)

Rise/fall Time

>100 microseconds

Environmental
Specifications

Operating Temp.

Oto50°C

Storage Temp.

—20t0 +85° C

NOTES: 1. Accuracy is affected by GPIB and RS-232 communications. To attain these accuracies only the Serial poll command of
the GPIB interface should be used while executing a transient or list.

BIT 4886 OPR 120419

1-3

13.1

BIT 4882 COMPATIBILITY

The BIT 4886 card complies with the SCPI 1997 standard as a member of the power supply
instrument class. The Bit 4882 product complies with the 1990 version of the SCPI standard.
During the years of 1990 to 1997, the SCPI consortium refined the standard, providing direction
for the *RST command and indicating the differences between *RST and the single byte GPIB
command of DCL and SDC. The BIT 4886 card when shipped by KEPCO, is not compatible
with user software developed for the BIT 4882. The user can make it more compatible by using
the SYST:SET command to reconfigure the operation of DCL, *RST and the sending of data to
the host computer. Appendix B, Figure B-8, illustrates the use of the SYST.SET command to
change the BIT 4886 to operate like the BIT 4882, except for some minor differences that will
remain for some 4882 command sequences (see Table 1-5).

TABLE 1-5. COMMAND DIFFERENCES FOR BIT 4886 CARD CONFIGURED AS BIT 4882

BIT Card Behavior

Command
BIT 4882 BIT 4886 configured as BIT 4882
VOLT?MAX Returns 100 No action - error 113
VOLT? MIN Returns 0 Returns -Eomax (e.g.for BOP 100-1 returns -100)
VOLT10 Set output = 10V No action - error 113

OUTP OFF;VOLT 10;0UTP ON

Set output =0

Set output = 10 volts

1-4

BIT 4886 OPR 120419

SECTION 2 - INSTALLATION

2.1 UNPACKING AND INSPECTION

The Interface Card has been thoroughly inspected and tested prior to packing and is ready for
operation following installation. Unpack, saving original packing material. If any indication of
damage is found, file a claim immediately with the responsible transport service. See Table 2-1
for items supplied.

TABLE 2-1. ITEMS SUPPLIED

ITEM KEPCO PART NUMBER QUANTITY
PCB Assembly 236-1836 1
Cable #1 241-0991 1
Cable #2 241-1096 1
(6-32 xsstfl%,n /litCF, ST) 102-0084 3
Label, Address 188-1726 1
Label, Control Identification 188-1826 1
Bracket 128-1810 1
RJ45 to DB9 adapter (see NOTE) 142-0506 1
RJA45 Patch Cord (see NOTE) 118-1164 1
NOTE: Item not required for installation; used to connect RS 232 port to an external
computer (see PAR 2.6).

2.2 SET START-UP DEFAULTS (SEE FIGURE 2-1)
The start-up default, consisting of the Device Address (GPIB address) is initially set by means of

DIP switches as described in PAR. 2.2.1. The default power supply identification is described in
PAR. 2.2.2.

BIT 4886 120419 2-1

221 SET (GPIB) DEVICE ADDRESS (SEE FIGURE 2-1)

The Device Address for the interface card is set by means of DIP switch S1, positions 1 through
5 (Figure 2-1). The Device Address is the permanent Listener or Talker address of the interface
card on the GPIB. It is factory preset to address 6. If a different Device Address is required in
your system, proceed as follows. There are 31 (1-31) possible choices (See Table 2-2).

1. Position the Interface Card as depicted in Figure 2-1.

2. The Device Address DIP switches are positions 1 through 5 (from right to left, Figure 2-1).
These switches are preset by Kepco to address 6. For other device addresses set them
according to Table 2-2.

2.2.2 POWER SUPPLY IDENTIFICATION

The BIT 4886 interface card is factory set to report power supply voltage as 200 Volts and cur-
rent as 20 Amperes. The interface card has nonvolatile random access memory which is used
to store these values. A special GPIB command of DIAG:PST is used to set the voltage and cur-
rent of the power supply which has the BIT 4886 card installed. Other commands can be used
to establish other operating characteristics such as the language and DCL operation. See
Appendix B and PAR. 4.1.2 for detailed procedures and instructions.

,ﬁ CARD EDGE
S

" e oo| B0eel

L]

ADDRESS
SELECTION
(ADDRESS 6
SHOWN)

m i

5041659

FIGURE 2-1. BIT 4886 SWITCH LOCATIONS

2-2 BIT 4886 120419

BIT 4886 120419

TABLE 2-2. DEVICE ADDRESS SELECTION

DECIMAL
ADDRESS

SELECTOR SWITCH S1 SECTION

(SIGNAL LINE)

>
o

>
>

A3

>
N}

>
=

O|lo(N|lO|O| | W[N|PF

=
o

=
[

=
N

=
w

[N
i

=
[¢)]

Juny
2]

[E
~

=
[ee]

=
©

N
o

N
[y

N
N

N
w

N
S

N
(6]

N
[«2)

N
~

N
[ee)

N
©

w
o

rlr|lr|lrlr|r|r|r|r|lr|lr|lr|r|r|r|o|lo|lo|lo|lo|o|o|o|o|o|o|o|o|o]|o

FP|IFP|IP|IO|OC|OC|O|PFR|PF|IFP|IFP|IO|OC|OC|O|PFR|PFR|IPFP|IP|IO|OC|OC|O|PFR|PFR|IFR|IPFL|O|O)|O

31

1

Rrlr|r|r|r|r|r|+r|o|lo|lo|lo|lo|o|o|o|r|r|r|rRr|rR|rR|rR|r|lojlo|o|o|o|o|o

1

r|lr|lo|lo|r|r|o|lo|lr|r|lo|lo|r|r|o|lo|r|r|o|lo|r|r|lo|lo|r|r|o|o|r|r]|oO

r|lo|r|o|r|o|r|o|lr|lo|lr|lo|r|o|r|o|r|o|r|o|lr|o|lr|lo|lr|o|r|o|r|O]|R

NOTE: 0= CLOSED (ON) (Towards printed circuit board)
1 = OPEN (OFF) (Away from printed circuit board)

2-3

2.3

2-4

INSTALLATION OF INTERFACE CARD INTO THE BOP

Refer to Figure 2-2 to install the BIT 4886 interface card.

CAUTION: The BIT 4886 card contains ESD sensitive components. Follow all proce-

NOTE:

Step 1.
Step 2.

Step 3.

Step 4.
Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.
Step 14.

Step 15.
Step 16.

Step 17.

dures in effect at your facility for handling ESD sensitive components.
Step numbers coincide with encircled numbers on Figure 2-2.

Remove a-c power to BOP by disconnecting line cord.

Remove BOP cover (see Detail A of Figure 2-2 for screw locations; for more detailed
instructions see Section 5, Figure 5-1 of your BOP Instruction Manual).

Locate Rear Bracket and note part number (on outside left edge):
if PN 128-1810 proceed to Step 4.
if not PN 128-1810, stop installation. Unit does not meet minimum requirements;
contact Kepco for assistance.

Remove and discard Rear Cover Plate (PN 128-1811) and associated hardware.

Unpack the BIT 4886 Interface Card Installation Components (PCB Assembly, Cables
#1 and #2, and three (3) Stop Nuts).

Remove J204 Connector Assembly (PN 241-0680) from Location #1. Mount Connec-
tor J204 into Location #3 using the Stop Nut.

Locate Transformer T202 and unplug connector from Location #4 only.

Install BIT 4886 Interface Card into the guides, slide into position so that mounting
holes in PCB Assembly line up with the two mounting posts on the BOP mounting
bracket.

Secure the BIT 4886 Interface Card to the Mounting Posts using the two (2) Stop Nuts.

Install Cable #1 (18-position connectors) to the BIT 4886 Interface Card, mate the
other end of the cable with Location #1 on BOP Al Assembly.

Install Cable #2 (5-position connectors) to the BIT 4886 Interface Card, mate the other
end of the cable with Location #2 on BOP Al Assembly.

Plug in 3-pin Connector from Transformer 100-2354 (removed in step 7) into BIT 4886
Card, Location #5.

Mark “-4886" after Model No. on Nameplate (see Detail A).

On BOP cover, peel off “Address Label” (PN 188-1012). Affix revised “Address Label”
(PN 188-1726) in vacated position (with part number facing front panel).

Reinstall BOP cover.

Reconnect power cord. Power up unit. If it beeps and then stops the installation was
successful.

Initialize the BIT card per PAR. 4.2,

BIT 4886 120419

DETAIL "B”

|
| |
| |
| |
| > (1) 128-1811,
| > | REAR COVER PLATE
| > (SEE DETAIL "A")
REAR | 9 ‘
COVER
COVER ! oo} ! e
‘ il %%\
| ! } N (1) 128-1810, N
N~ REAR BRACKET
I g I T SEE DETAIL "B"
o H PN REAR
| | \ | - _COVER
[i |
I | ! | 241-0680,(J204)
[E— ! ! CONNECTOR ASSY.
REAR BRACKET 128-1811 ! AN ATION
(BEHIND REAR COVER) L 7

LOCATION

LOCATION #5

THIS END PLUGS
INTO A1 ASS'Y
(LOCATION #1)

(1) 241-0991,
CABLE #1
(18 CONTACTS)

(1)241-1096

. THIS END PLUGS
CABLE #2 (5 CONTACTS) -

INTO A1 ASS'Y
(LOCATION #2)

(2) 102-0084, STQP NUT
6-32 X 5/16 ACF, ST

(FULL RACK ONLY)

SCREW
1) 102-0084, STOP NUT
(o 5-32 X 5/16 ACF, ST (FULL RACK ONLY,
’ SCREW (8) FROM FRONT)

(1) 241-0680, CONN.ASS'Y (J204)

SCREW

PC-12
CONNECTOR

SCREW
(FULL RACK ONLY)

SCREW (5)

(FULL RACK ONLY)

3041680 DETAIL "A”

FIGURE 2-2. INSTALLATION OF MODEL BIT 4886 INTO BOP

BIT 4886 120419

FRONT PANEL

2-5

2.4

3041133

2-6

INPUT/OUTPUT SIGNALS

The IEEE 488 port is a 24 pin IEEE 488 connector (Figure 2-3) and conforms mechanically and
electrically to the IEEE 488 standard; refer to Table 2-3 for pin assignments. Table 2-4 describes
the RS 232 port pin connections.

TABLE 2-3. INPUT/OUTPUT PIN ASSIGNMENTS

PIN SIGNAL NAME FUNCTION
1 Dlo1 I/O Line

2 Dlo2 I/O Line

3 Dl03 I/O Line

4 Dlo4 I/O Line

5 EOI End or Identify

6 DAV Data Valid

7 NRFD Not Ready for Data

8 NDAC Not Data Accepted

9 IFC Interface Clear

10 SRQ Service Request

11 ATN Attention

12 SHIELD Shield

13 DI05 I/O Line

14 Dlo6 I/O Line

15 Dlo7 1/O Line

16 Dlo8 I/O Line

17 REN Remote Enable

18 GND Ground (signal common)
19 GND Ground (signal common)
20 GND Ground (signal common)
21 GND Ground (signal common)
22 GND Ground (signal common)
23 GND Ground (signal common)
24 LOGIC GND Logic Ground

IEEE 488 BUS (GPIB) 24 PIN RECEPTACLE

12

FIGURE 2-3. |EEE 488 (GPIB) CONNECTOR

BIT 4886 120419

TABLE 2-4. RS232C PORT INPUT/OUTPUT PIN ASSIGNMENTS

CONNECTOR PIN SIGNAL NAME FUNCTION
1 RTS Request To Send (protocol not used)
2 RXD Receive Data
RS 232 3 TXD Transmit Data
PORT 4 LOGIC GND Logic Ground
5 LOGIC GND Logic Ground
6 CTS Clear To Send (protocol not used)

BIT 4886 120419

TABLE 2-5. RJ45 TO DB9 ADAPTER WIRE FUNCTIONS

Wire DB9 Pin Purpose
Green 5 Return for pins 2 and 3.
Brown 3 Carries data from the Kepco power supply to the controller.
Yellow 2 Carries data from the controller to the Kepco power supply.
= =
GREEN
BROWN

Y = \; YELLOW

RJ45 CONNECTOR

3043114

FIGURE 2-4.

DB9 CONNECTOR

RJ45 TO DB9 ADAPTER WIRING

2-7

2.5

2.6

2.7

2-8

GPIB CONNECTIONS

Connect the BOP-BIT 4886 Interface Card to the GPIB bus using a standard GPIB cable con-
nected to the BIT 4886 24-pin GPIB connector.

RS 232 CONNECTIONS

Connect the BOP-BIT 4886 Interface Card to an external RS-232 controller with a DB9 type
connector (male pins) by plugging the 6-pin connector of the RJ45 patch cord (P/N 118-1164,
supplied, see Table 2-1) into the BIT 4886 RS 232 port. Then plug the RJ45 patch cord 8-pin
connector into the RJ45 to DB9 adapter (P/N 142-0506, supplied (see Table 2-1). Refer to Table
2-5 and Figure 2-4 and connect the adapter to the RS 232 controller.

INITIAL CHECK-OUT PROCEDURE

After the BIT 4886 card has been installed per PAR. 2.3, perform the following procedure to ver-
ify that it is functioning properly.

1. Connect the BOP-BIT 4886 Interface Card to either the GPIB bus (see PAR. 2.5) or an exter-
nal RS-232 controller with a DB9 type connector (male pins) (see PAR. 2.6).

2. Apply power to BOP power supply. The BOP-BIT 4886 will beep for less than 1 second, then
will be ready for use.

3. Send the *IDN? query via either the GPIB or RS 232 port.

Assuming the BIT 4886 card is installed in a BOP 72-6 as an example, verify that the unit
responds with KEPCO,BIT488-6 72-6,A38621 11/10/98,1.81-1.81.

If the unit responds with KEPCO,BIT488-6 200-20,A38621 10/01/98,1.81-1.81, it means that
the card was not initialized (see PAR. 4.2).

Note that date 10/01/98 is the initial calibration date performed at the factory and indicates
the card has never been calibrated by the user.

4. Send VOLT? Verify that unit responds with O (indicating voltage is set to 0, the power-up con-
dition).

5. Send OUTPUT ON;VOLT MAX. Verify that the BOP power supply provides maximum output
voltage (e.g., 72V d-c. for BOP 72-6).

6. Send FUNC:MODE CURR. Verify that BOP front panel current LED lights.

7. Send FUNC:MODE VOLT. Verify that BOP front panel voltage LED lights.

BIT 4886 120419

SECTION 3 - CALIBRATION

NOTE: The calibration procedures below are for the purpose of recalibration of the BOP power
supply and for the case where the BIT card is installed by the user. Unless otherwise
noted, syntax is in SCPI. A BOP Series power supply with BIT 4886 card installed is
referred to as BOP-BIT.

3.1 EQUIPMENT REQUIRED

The following is a listing of equipment required for calibration of the Interface Card installed in a
Kepco BOP Series Power Supply:

A. Precision digital voltmeter (DVM), minimum resolution 7 digits (suggested):
B. An IEEE 488 System Controller, (with appropriate software) connected to BOP Power
Supply with an IEEE 488 cable.
C. Precision four-terminal current shunt (sense resistor) with suitable power rating and tol-
erance for the currents to be measured.

D. Heat sink, capable of dissipating 10 times power rating of sense resistor.

PC—12 NOTE:
TO USE FRONT PANEL FOR CALIBRATION REMOVE REAR PANEL

| 2 11 SENSE CONNECTIONS BETWEEN OUTPUT AND OUTPUT SENSE
| 4 3 AND BETWEEN COMMON AND COMMON SENSE. THEN INSTALL
16 5] CORRESPONDING CONNECTIONS BETWEEN OUTPUT AND OUTPUT SENSE
18 71 AND BETWEEN COMMON AND COMMON SENSE AT FRONT PANEL.
110 9
21 R19A
114 131 R32
llg 13} ACCESSIBLE AFTER
120 181 COVER REMOVED
122 21|
124 231
126 251
128 271
130 291
132 31
134 33 ADDRESS
136 35 SELECTION
}ig ?;} St BOP, COVER ATTACHED,
142 411 TOP VIEW
144 43
146 451
148 471
150 491

REAR PROGRAMMING
CONNECTOR

IEEE CONNECTOR

3041681

1 (OUTPUT SENSE)
VOLTAGE
)

6 (COMMON SENSE CALIBRATION

FIGURE 3-1. BOP POWER SUPPLY, INTERNAL CALIBRATION CONTROL LOCATIONS

BIT 4886 120419

3-1

3.2

3-2

(VOLTAGE CURRENT ON OFF

MODE CURRENT CONTROL
1 —1
REMOTE Q

GROUND
® © ® ©)
CURRENT

SENSING COMMON ~ OUTPUT SENSING CURRENT LIMITS PROGRAMMING

=0 =0 @O O

-1—0 0—+1

BOP FRONT _/

Rs

_a PRECISION 4—TERMINAL

CURRENT SHUNT

NOTE: ALL SENSE RESISTORS MUST BE MOUNTED

ON A HEATSINK WITH A MINIMUM SURFACE
AREA OF 36 SQUARE INCHES TO MAINTAIN

THERMAL STABILITY DURING CALIBRATION. | o
]
£
3040383 PRECISION DVM

FIGURE 3-2. CURRENT SHUNT CONNECTIONS

CALIBRATION OF BIT 4886 INTERFACE CARD

Calibration of the BOP-BIT 4886 card is performed using SCPlI commands. The Instrument
driver available at www.kepcopower.com/drivers.htm provides a graphical interface with infor-
mational displays and prompts which lead you through the calibration of the BIT 4886 card. This
VISA compliant driver works with many GPIB cards from suppliers like National Instruments and
Hewlett-Packard.

Calibration using the IVI-COM driver is described in PAR. 3.2.2. The BIT 4886 card can also be
calibrated using the manual procedure described in PAR. 3.2.1.

NOTE: During calibration various circuits of the BIT 4886 Interface Card are verified. If an error
occurs during the verification process, the interface card will beep and an error 240,
Hardware, will be placed in the error queue.

The calibration values for different BOP Models are defined in Tables 3-1 and 3-2 for voltage
and current, respectively. For each step requiring a measurement during calibration the toler-
ance of the measurements are included in Tables 3-1 and 3-2 and are not repeated in the indi-
vidual steps.

BIT 4886 120419

Table 3-3 lists suggested sense resistors and includes Kepco and Manufacturer’s part numbers.
The accuracy of these resistors is 0.1% and will result in a system accuracy of 0.11% if the listed
values in Tables 3-1 and 3-2 are used. For a system accuracy of 0.01%, measure the actual
value of the sense resistor accurate to 7 places. Then calculate the expected values per
Table 3-2 notes A-E; use with the listed tolerances of Table 3-2 to perform the calibration.

TABLE 3-1. CALIBRATION MEASUREMENTS AND TOLERANCES - VOLTAGE

LOW voLT MAX HIGH LOW LOW VOLTAGE
RANGE JER0 | oUTPUT RANGE RANGE RANGE PROTECT
ZERO ACCURACY ACCURACY NOMINAL ADJUST
MODEL | PAR-32.1 | PAR.32.1 | PAR. 3.2.1 PAR. 3.2.1 PAR. 3.2.1 PAR.3.2.1 PAR. 3.2.1
STEP2 | STEP3 |STEPS4,5| STEPSG6, 8 STEPS 11, 13 STEP 10 STEP 15
3P2A2R'4 3P§§'4 NIA PAR.3.2.2.4 PAR.3.2.2.4 N/A PAR.3.2.2.4
creps | StEpe STEPS 7, 8 STEPS 9, 10 STEP 11
BOP 20-5M 20.0015V (MAX) | 5.0003V (MAX)
BOP 20-10M | 8(\)/03\/ 0 83/03\/ 20V -20.0015V (MIN) | -5.0003V (MIN) 5V ++20050003355\>/
BOP 20-20M | **- = +0.0015V +0.0003V =
36.0027V (MAX) | 9.0006V (MAX)
BOP 36-6M ov ov +36.005V
36V -36.0027V (MIN) | -9.0006V (MIN) v
BOP 36-12M
+0.0004V | +0.0004V +0.0027 +0.0006 +0.005V
BOP 50-2M 50.0035V (MAX) | 12.5009V (MAX)
BOP50-4 | o 88’05\/ 0 c())(;/osv 50V -50.0035V (MIN) | -12.5009V (MIN) 12.5V ++500600077\>/
BOP50-8 | = +0.0035 +0.0009 =
BOP723M | OV o |y | Tacosvuing | asooiaviving | 1sv | 720095V
BOP 72-6M | +0.001V | +0.001V +0.005 +0.0014 +0.0095V
BOP 100-1M 100.0075V (MAX) | 25.002V (MAX)
BOP 100-2M | o %\é w | <0 %\é v 100V |-100.0075V (MIN) | -25.002V (MIN) 25V +i8°£;§\5/v
BOP 100-4M | — = +0.0075 +0.002 =
200.01V (MAX) | 50.004V (MAX)
Y, ov +200.025V
BOP 200-IM | oo | Lo 002y 200V -200.01V (MIN) | -50.004V (MIN) 50V 0,025y
+0.01 +0.004

BIT 4886 120419

3-3

TABLE 3-2. CALIBRATION MEASUREMENTS AND TOLERANCES - CURRENT

LOwW MAIN MAIN HIGH LOW LOW CURRENT
CURRENT | CURRENT |CURRENT| CURRENT |CURRENT| CURRENT | PROTECT
SENSE ZERO ZERO NOMINAL | ACCURACY | NOMINAL | ACCURACY | ADJUST
RESISTOR
VALUE PAR.3.21| PAR.3.21 |PAR.3.21| PAR.3.2.1
MODEL (SEE PSATRE'S'lZf PQ'IBE.P3.12§'31 STEPS STEPS STEP 24, | STEPS 26, PQTRE'S':;
NOTE AND 19, 20 21,23 25 28
TABLE
3-3) PAR.3224 |PAR.3224| PA;éiféz"‘ NIA P$T'1P352'2264 PAR.3.2.2.4
STEP 16 STEP 17 ' STEP 22
18,19 21
1.000075V 0.25005V
MAX) (MAX)
BOP 100-1M ov ov (1.0013V
BOP 200-1M | 1O +0.000025V | +0.00005V v -1.000075v 0.28v -0.25005V +0.0013V
(MIN) (MIN)
+0.000075V +0.00005V
2.00015V 0.5001V
MAX) (MAX)
BOP 50-2M ov ov (2.00026V
BOP 100-2M | 1 OMM +0.00005V +0.0001V v -2:00015V 0.5V -0.5001v +.00026V
(MIN) (MIN)
+0.00015V +0.0001V
3.0003V 0.75015V
(MAX) (MAX)
ov ov 3.0039V
BOP 72-3M | 10hm 4£0.000075V | 40.00015V 3v -3.0003V 0.75V 075015V | o sov
(MIN) (MIN)
+0.0003V +0.00015V
4.0004V 1.0002V
(MAX) (MAX)
BOP 50-4 ov ov 4.0007V
BOP 100-4m | 9N +0.0001V +0.0002V v ~4.0004v v -1.0002v +0.0007V
(MIN) (MIN)
+0.0004V +0.0002V
0.5000375V 0.125025V
(MAX) (MAX)
ov ov 0.50065V
BOP 20-5M | 0.10hm | ooy | +0.000025V 0.5V -0.5000375V | 0125V | -0.125025V | ool
(MIN) (MIN)
+0.0000375V +0.000025V
0.600045V 0.15003V
(MAX) (MAX)
BOP 36-6M ov ov 0.60075V
Bop 72-6M | O1OM™ | 10000015V | +0.00003v 0.6V -0.600045v 0.15V “0-18003V |5 0075V
(MIN) (MIN)
+0.000225V +0.00003V
0.80006V 0.20004V
(MAX) (MAX)
ov ov 0.80105V
BOPS50-8 | 0.00MM | o o0 u | +0.00004v 0.8V -0.80006V 0.2v -0.20004V | oo ey
(MIN) (MIN)
+0.00006V +0.00004V
1.000075V 0.25005V
(MAX) (MAX)
ov ov 1.00013V
BOP 20-10M | 0.10hm | o v | +0.00005v 1.0V -1.000075V 0.25V -0.25005V | ooy
(MIN) (MIN)
+0.000075V +0.00005V
1.020009V 0.030006V
(MAX) (MAX)
ov ov 0.120016V
BOP 36-12M . -
0.010hm | o ooo0av | +0.000006v | 012V 1.020009V 0.03v 0.030006V | " 6y
(MIN) (MIN)
+0.000009V +0.000006V
34 BIT 4886 120419

TABLE 3-2. CALIBRATION MEASUREMENTS AND TOLERANCES - CURRENT (CONTINUED)

LOw MAIN MAIN HIGH Low LOw CURRENT
CURRENT | CURRENT |CURRENT| CURRENT |CURRENT| CURRENT | PROTECT
SENSE ZERO ZERO NOMINAL | ACCURACY | NOMINAL | ACCURACY | ADJUST
RESISTOR
VALUE PAR.32.1| PAR.321 |PAR.321| PAR.3.21
MODEL (SEE ngés'ff ngE'PS'lzél STEPS STEPS STEP 24, | STEPS 26, ngésgbl
NOTE AND 19, 20 21,23 25 28
TABLE
3-3) PAR.3.2.2.4 | PAR.3.2.2.4 NIA PA;gﬁéz"‘ NIA P§TF§§52'2%4 PAR. 3.2.2.4
STEP 16 STEP 17 : STEP 22
18, 19 21
0.02000015V 0.0050001V
(MAX) (MAX)
ov ov 0.0200025V
BOP 20-20M -)
0.001 Ohm | o005y | +0.0000001y | 002V | -0:02000015V | 0.008V | -0.0050001V | oo
(MIN) (MIN)
+0.00000015V +0.0000001V
REFER TO
NOTES IF
EXACT Rsense SEE SEE SEE SEE NOTES SEE | SEE NOTES SEE
SENSE SEE
RESISTOR | porre. NOTE A. NOTEB. | NOTEC. CANDD NOTEE. | EANDB. NOTE F.
VALUE IS
KNOWN.
USE SPACE
PROVIDED
AT RIGHT
FOR CAL-
CULATED
VALUES.

NOTES: The following formulas are used to calculate proper calibration values if the exact Sense Resistor value is known.
Rsense = the measured value of the sense resistor to 6 places (minimum).

I =Rated current output of BOP (e.g., for BOP 50-4M, |

mmo o ® >

(Rsense) (174) (0.00005)
(Rsense) (174) (0.0001) [FOR MODELS WHERE 1 = 3 OR 4 USE (Rgpnse) (174) (0.00015)]
(Rsense) (D

(Rsensg) (1) (0.00075) [FOR MODELS WHERE 1 = 3 OR 4 USE (Rggynsg) (1) (0.00012)]
(Rsense) (174)
[(Rsense) (1omax)]/3800

= 4)

TABLE 3-3. SUGGESTED SENSE RESISTORS

RATED CURRENT | RESISTORVALUE | KEPCOPARTNO. | mANURACTURER | ML Uit REE
20A 0.001 OHM, 30W KT 3131 ISOTEK RTO-B-R001-1
12A 0.01 OHM, 30W KT 3130 ISOTEK RTO-B-R01-1

5A, 6A, 8A, 10A 0.1 OHM, 30W KT 3126 ISOTEK RTO-B-R1-1
1A, 2A, 3A, 4A 1 OHM, 30W KT 3146 ISOTEK RTO-B-1R00-1.0

NOTE: ALL SENSE RESISTORS MUST BE MOUNTED ON A HEATSINK WITH A MINIMUM SURFACE AREA OF 36 SQUARE
INCHES TO MAINTAIN THERMAL STABILITY DURING CALIBRATION (KEPCO P/N 136-0451 RECOMMENDED FOR
KT SENSE RESISTORS LISTED).

BIT 4886 120419

3-5

3.2.1

3-6

MANUAL CALIBRATION

1.

Initiate calibration by sending the SCPI command SYSTem:PASSword:CENable DEFAULT
and then send CAL:STATe 1. The password (DEFAULT) has been set at the factory. If the
password has been changed from DEFAULT, substitute the correct password for the unit in
the SYST:PASS:CEN command. If the password has been forgotten, consult factory.

If voltage calibration is not needed, proceed to step 16 for current calibration.

. Set the BOP to zero volts output under the 1/4 range by sending CAL:LVOLT ZERO. Con-

nect a Digital Voltmeter (DVM) to the BOP output to measure the power supply output.
Adjust A1R81 on BOP until the DVM reads the voltage specified in Table 3-1 for LOW
RANGE ZERO.

. Set the BOP output voltage to zero by sending CAL:VOLT ZERO. Send the command

CAL:DPOT 1 to increase the voltage or CAL:DPOT -1 to decrease the voltage until the
DVM reads the voltage specified in Table 3-1 for VOLT ZERO.

. Set the BOP to maximum positive output voltage by sending CAL:VOLT MAX. Measure the

voltage output using a DVM of at least 7 digits in accuracy.

. Decrease the voltage output by sending CAL :DPOT -1 commands until the voltmeter reads

less than the rated output voltage specified in Table 3-1 for MAX OUTPUT. Then send
CAL:DPOT 1 and verify the voltage is slightly above the rated output voltage specified in
Table 3-1 for MAX OUTPUT

. Referring to Table 3-1 (HIGH RANGE ACCURACY) for value and + tolerance, send the com-

mand CAL :DATA -10 to decrease the voltage until the voltage is less than the rated output.
Send the command CAL : DATA 1 to increase the voltage or the command CAL:DATA -1to
decrease the voltage until the DVM reads the value specified in Table 3-1 for HIGH RANGE
ACCURACY MAX.

. Set the BOP to maximum negative output by sending CAL:VOLT MIN. Continue to measure

the output of the supply using the DVM.

If the output is less negative than the value specified in Table 3-1 for HIGH RANGE ACCU-
RACY MIN, send CAL:DATA -100 and verify the output is now more negative. If the value
is still not more negative, send CAL:DPOT -1 to change the course adjustment and provide
a more negative output.

Send the command CAL:DATA 10 to increase the voltage. Continue to send CAL:DATA 10
until the voltage is less negative than the value specified in Table 3-1 for HIGH RANGE
ACCURACY MIN. Send CAL:DATA -1 until the reading is within the limits specified in Table
3-1 for HIGH RANGE ACCURACY MIN.

If the CAL:DPOT command was used to adjust the negative output, send CAL:VOLT MAX to
the unit and repeat step 6 before proceeding to step 9.

. Set the BOP to 1/4 scale (low) range positive output voltage by sending CAL:LVOLT MAX.

Output voltage should be as specified in Table 3-1 for LOW RANGE NOMINAL. Measure the
voltage output using a Digital Voltmeter of at least 7 digits in accuracy.

BIT 4886 120419

10.Decrease the voltage output by sending CAL:DPOT -1 commands until the voltmeter reads
less than the rated output. Then send CAL:DPOT 1 and verify the voltage is slightly above
value specified in Table 3-1 for LOW RANGE NOMINAL.

11. Send the command CAL:DATA -10 to decrease the voltage until the voltage is less than
value specified in Table 3-1 for LOW RANGE ACCURACY MAX. Send the command
CAL:DATA 1 to increase the voltage or the command CAL:DATA -1 to decrease the volt-
age to obtain the value specified in Table 3-1 for LOW RANGE ACCURACY MAX.

12.Set the BOP to maximum negative 1/4 scale range output by sending CAL:LVOLT MIN.
Continue to measure the output of the supply.

13.If the output is less negative than the value specified in Table 3-1 for LOW RANGE ACCU-
RACY MIN, send CAL:DATA -100 and verify the output is now more negative. If the value
is not more negative, Send CAL:DPOT -1 to change the course adjustment and provide a
more negative output.

Send the command CAL:DATA 10 to increase the voltage. Continue to send CAL:DATA 10
until the voltage is less negative than the value specified in Table 3-1 for LOW RANGE
ACCURACY MIN. Send CAL:DATA -1 until the reading is within the limits specified in Table
3-1 for LOW RANGE ACCURACY MIN.

If the CAL:DPOT command was used to adjust the negative output, send CAL:LVOLT MAX
to the unit and repeat step 11 before proceeding to step 14.

14.Set the BOP to voltage limit by sending CAL:VPR MAX. Continue to measure the output of
the BOP.

15.Send the command CAL:DATA -10 to decrease the voltage until the output voltage mea-
sured is within, or close to, the tolerance specified in Table 3-1 for VOLTAGE LIMIT ADJUST.
Send the command CAL:DATA 1 to increase the voltage or CAL-DATA -1 to decrease the
voltage as necessary until the measured value is within the tolerance specified in Table 3-1
for VOLTAGE LIMIT ADJUST.

NOTE: If Current calibration is not required, proceed to step 31.

16.Send CAL : ZERO to prepare for current calibration. After sending the command, the BOP out-
put will be set to zero volts. Connect the Kelvin type sense resistor to the BOP output using a
heat sink capable of dissipating 10 times rated power of sense resistor. Connect the DVM to
the sensing terminals of the Kelvin type sense resistor as shown in Figure 3-2. Table 3-2 pro-
vides suggested sense resistor values for various BOP current outputs, as well as the for-
mula for calculating expected measured values and tolerances for any sense resistor where
the precise resistance is known. Table 3-3 lists possible sources for obtaining the suggested
sense resistors

17.Set the BOP to zero volts across the sense resistor (corresponding to zero current) under the
low (1/4 Scale) current range by sending CAL :LCURR ZERO. Adjust A1R83 on BOP until the
DVM reads the voltage specified in Table 3-2 for LOW CURRENT ZERO.

18.Set the BOP current to 0 Amps in current mode by sending CAL : CURR ZERO. Use the com-

mand CAL:DPOT 1 to increase the current or CAL:DPOT -1 to decrease the current until
the DVM reads the voltage specified in Table 3-2 for MAIN CURRENT ZERO.

BIT 4886 120419 3-7

3-8

19.Set the BOP to maximum positive output current by sending CAL :CURR MAX. Measure the
voltage across the sense resistor using a Digital Voltmeter of at least 7 digits in accuracy.
Verify the DVM reads the voltage specified in Table 3-2 for MAIN CURRENT NOMINAL. The
voltage shown on the DVM should be positive; if not, reverse the leads to the DVM.

20.Decrease the voltage across the sense resistor by sending CAL:DPOT -1 commands until
the voltmeter reads less than the value specified in Table 3-2 for MAIN CURRENT NOMI-
NAL. Then send CAL:DPOT 1 and verify the voltage is slightly above the specified voltage.

21.Send the command CAL:DATA -10 to decrease the voltage across the sense resistor until
the voltage is less than the value specified in Table 3-2 for HIGH CURRENT ACCURACY
MAX. Send the command CAL:DATA 1 to increase the voltage or CAL:DATA -1 to
decrease the voltage until the DVM reads the voltage specified in Table 3-2 for HIGH CUR-
RENT ACCURACY MAX.

22.Set the BOP to maximum negative output by sending CAL:CURR MIN. Continue to measure
the voltage across the sense resistor.

23.1f the voltage across the sense resistor is less negative than the value specified in Table 3-2
for HIGH CURRENT ACCURACY MIN, send CAL:DATA -100 and verify the output is now
more negative. If the value is not more negative than the value found in Table 3-2 for HIGH
CURRENT ACCURACY MIN, send CAL:DPOT -1 to change the course adjustment and
provide a more negative output.

Send the command CAL:DATA 10 to increase the voltage across the sense resistor. Con-
tinue to send CAL :DATA 10 until the voltage is less than the value specified in Table 3-2 for
HIGH CURRENT ACCURACY MIN. Send CAL:DATA -1 until the DVM reads the voltage
specified in Table 3-2 for HIGH CURRENT ACCURACY MIN.

If the CAL:DPOT command was used to adjust the negative output, send CAL : CURR MAX to
the unit and repeat step 21 before proceeding to step 24.

24.Set BOP to the maximum current at low range (1/4 Scale) by sending CAL : LCURR MAX. Ver-
ify the DVM reads the voltage specified in Table 3-2 for LOW CURRENT NOMINAL.

25.Decrease the voltage across the sense resistor by sending CAL:DPOT -1 commands until
the voltmeter reads less than the value specified in Table 3-2 for LOW CURRENT NOMI-
NAL. Then send CAL:DPOT 1 and verify the voltage is slightly above this value.

26.Send the command CAL:DATA -10 to decrease the voltage across the sense resistor until
the voltage is less than the value specified in Table 3-2 for LOW RANGE ACCURACY MAX.
If necessary, send the command CAL:DATA 1 to increase the voltage across the sense
resistor or CAL:DATA -1 to decrease the voltage across the sense resistor until the DVM
reads the voltage specified in Table 3-2 for LOW RANGE ACCURACY MAX.

27.Set the BOP to maximum negative 1/4 scale range output current by sending CAL : LCURR
MIN. Continue to measure the voltage across the sense resistor.

28.1f the voltage across the sense resistor is less negative than the value specified in Table 3-2
for LOW RANGE ACCURACY MIN, send CAL:DATA -100 and verify the output is now
more negative. If the value is not more negative, Send CAL:DPOT -1 to change the course
adjustment and provide a more negative output.

Send the command CAL:DATA 10 to increase the voltage across the sense resistor. Con-
tinue to send CAL :DATA 10 until the voltage is less than the value specified in Table 3-2 for
LOW RANGE ACCURACY MIN. Send CAL:DATA -1 until the reading is within the limits
specified in Table 3-2 for LOW RANGE ACCURACY MIN.

BIT 4886 120419

If the CAL:DPOT command was used to adjust the negative output, after adjusting the nega-
tive supply output, send CAL:LCURR MAX to the unit and repeat step 26 before proceeding
to step 29.

29.Set the BOP to current limit by sending CAL:CPR MAX. Continue to measure the output of
the BOP.

30.Send the command CAL:DATA -10 to decrease the voltage across the sense resistor until
the output voltage measured is within, or close to, the tolerance specified in Table 3-2 for
CURRENT LIMIT ADJUST. Send the command CAL:DATA 1 to increase the voltage or
CAL:DATA -1 to decrease the voltage as necessary until the measured value is within the
tolerance specified in Table 3-1 for CURRENT LIMIT ADJUST.

31.Save the calibration levels by sending CAL:SAVE 2/21/2004. The 9 characters at the end
are optional and are the calibration date of the power supply. The date entered in this man-
ner is reported in the *1dn? query. This can be prove useful for checking calibration dates
when periodic calibration is imposed by system or quality requirements.

3.2.2 CALIBRATION USING IVI DRIVER
Calibration of the BOP with BIT 4886 installed (BOP-BIT) is performed using SCPI commands
implemented through the Instrument driver. The driver provides a graphical interface with infor-
mational displays and prompts which lead you through the calibration of the Power Supply. This
IVI compliant driver works with many GPIB cards from suppliers like National Instruments and
Hewlett-Packard.
This driver requires a helper application (visa32.dll) to be installed on the computer being used.
VISA uses resource strings (see Table 3-4) to address the unit.

TABLE 3-4. VISA RESOURCE STRING CORRESPONDING TO INTERFACE
INTERFACE VISA RESOURCE STRING COMMENT
GPIB GPIB::xx::INSTR The GPIB address replaces xx.
SERIAL ASRLy::INSTR The com port number replaces y.
3.22.1 SETUP

1. The following calibration procedure uses a calibration panel which is part of the IVI driver for
the BIT 4886 which can be downloaded from the Kepco website at:
www.kepcopower.com/drivers.htm
Unzip the files and double-click on setup.exe to install the driver.

2. After the program is installed, double click on
\Program Files\KepcodcPower\\KepcoControlPanel\KepcoControlPanel.exe
to run the program. Two windows appear: the VISA Resource Descriptor Input panel (Figure
3-3) and the Main Control panel (with display blank) as shown in Figure 3-4.

3. Enter the VISA resource descriptor of the BOP-BIT into the VISA Resource Descriptor Input
panel (Figure 3-3), or leave blank to use the default setting (GPIB::6), then click OK.

BIT 4886 120419 3-9

g &

Kepco Control Program @
Enter WI5A resource Descriptor,
leave blank to use default (default = GFIE::&)

Cancel |

FIGURE 3-3. INPUT VISA RESOURCE DESCRIPTOR

4. The program will attempt to connect to the BOP-BIT If connection is successful, the Main
Control Panel display now shows the Instrument Model and Driver Revision as shown in Fig-
ure 3-4. If an Initialization Error message appears, either the IVl Shared components or
VISA-COM was not installed correctly. Return to step 1 and reinstall the driver.

85 Kepco Control Panel = i IEI_ Xi

Kepco Control Panel Rev 2.0
Driver Revision: 1.1.6.0

KEPCO,BIT 4886 100-1 03-14-2016,E160287,5.16-5.15 [CALIBRATE |
RESET
Vread Iread
0 -0.001714 oFF o Range High
West lsst OUTRUT Range Auto

SET

FIGURE 3-4. MAIN CONTROL PANEL, TYPICAL FOR BOP 100-1M WITH BIT 4886

3.2.2.2 MAIN CONTROL PANEL

The main control panel allows setting the voltage and current, enabling and disabling the output,
selecting the current range, resetting the unit, and calibrating the unit.

1. To set the unit's voltage and current, enter the values into the Vset and Iset boxes, respec-
tively, and click the SET button.

2. To enable or disable the output, click the OUTPUT button.

3. To reset the unit to power-up state (output OFF, voltage and current set to 0), click the
RESET button.

4. Range High and Range Auto radio buttons allow range selection.

3-10 BIT 4886 120419

3.2.2.3 CALIBRATION CONTROLS

CAUTION: Before performing calibration, set BOP OUTPUT to OFF and connect short
across BOP output, then set OUTPUT to ON and Voltage to 10V. It is necessary
to wait 10 minutes before calibrating the unit to allow for thermal stabiliza-
tion. After 10 minutes, set OUTPUT to OFF and remove short from BOP output,
then proceed with calibration.

All adjustments are done using the four arrow buttons that appear during Calibration (see Figure
3-5 and Table 3-5). The double arrow buttons << and >> either increase (>>) or decrease (<<)
the output by a maximum of 18 steps (each step is one LSB (Least Significant Bit), equivalent to
0.024% of nominal value) at a time; the > and < buttons either increase (>) or decrease (<) the
output one step at a time.

oS! Kepco Control Panel :_-|:| (@ =]

| oK | | << || < || = || b5 :RESEI’ |

FIGURE 3-5. CALIBRATION CONTROLS

TABLE 3-5. CALIBRATION PANEL FUNCTIONS

BUTTON OR WINDOW Function

<< button Coarse Adjustment - Decreases the output value by a maximum of LSBs.

>> putton Coarse Adjustment - Increases the output value by a maximum of 18 LSBs.

< button Fine Adjustment - Decreases the output value by one LSB.

> button Fine Adjustment - Increases the output value by one LSB.

OK button Enters the value displayed in the text field and advances calibration to next step.

3.2.2.4 CALIBRATION PROCEDURE

1. Click on the Calibrate button on the main control panel (see Figure 3-4). This opens a cali-
bration panel (see Figure 3-5 and Table 3-5) that allows calibration in either voltage or cur-
rent mode.

2. After initializing, the password window appears (see Figure 3-6). The password (DEFAULT)
has been set at the factory. If the password has been changed from DEFAULT, type the
proper password in the text box and click OK. If the password has been forgotten, consult
factory. If the password is correct, the calibration panel (Figure 3-5) is active and calibration
can be accomplished by following the screen prompts.

BIT 4886 120419 3-11

3-12

3.

4.

Kepce Calibration

Enter Password 0

i

Cancel

i

FIGURE 3-6. PASSWORD ENTRY

For Voltage Calibration, click YES button (see Figure 3-7).
Unit Calibration EX

Cal Voltage ¥ no=skip

FIGURE 3-7. VOLTAGE CALIBRATION

The text window reads Connect DVM to Output Sense, Remove Shunt. Remove
any connections between +OUT and —OUT. Connect DVM (high) to +OUT and DVM (low)
to —OUT, then click OK button.

NOTE: Use external DVM for all measurements.

5.

The text window reads LVOLT ZERO Adjust R81. Adjust A1R81 on BOP until the DVM
reads the voltage specified in Table 3-1 for LOW RANGE ZERO, then click OK button.

. The text window reads VOLT ZERO. Using the < and > buttons (see PAR. 3.2.2.3), adjust the

output voltage until the DVM reads the voltage specified in Table 3-1 for VOLT ZERO, then
click OK button.

The text window reads VOLT MAX. Using the coarse << and >> and fine < and > buttons,
adjust the output voltage until DVM reading is as specified in Table 3-1 for HIGH RANGE
ACCURACY then click OK button.

The text window reads VOLT MIN. Using the coarse << and >> and fine < and > buttons,
adjust the output voltage until DVM reading is as specified in Table 3-1 for HIGH RANGE
ACCURACY, then click OK button.

. The text window reads LVOLT MAX. Using the coarse << and >> and fine < and > buttons,

adjust the output voltage until DVM reads voltage specified in Table 3-1 for LOW RANGE
ACCURACY, then click OK button.

10.The text window reads LVOLT MIN. Using the coarse << and >> and fine < and > buttons,

adjust the output voltage until DVM reads voltage specified in Table 3-1 for LOW RANGE
ACCURACY, then click OK button.

BIT 4886 120419

11. The text window reads VPR MAX. Using the coarse << and >> and fine < and > buttons,
adjust the output voltage until DVM reads voltage specified in Table 3-1 for VOLTAGE PRO-
TECT ADJUST, then click OK button.

12.The text window reads VPR MIN - No adjustment, check only. Click OK button to
proceed to next step.

13.The text window reads VOLT CAL DONE. A separate window opens and reads Cal Cur-
rent? no=skip. Click YES button to perform current calibration.

14.The text window reads Connect shunt across output. Connect precision shunt resis-
tor (see PAR. 3.1) across +OUT and —OUT terminals. After connecting the shunt click OK
button.

15.The text window reads With shunt connected across output, connect DVM
across shunt. Connect DVM (high) to the shunt sensing terminal that correlates to +OUT
and DVM (low) to the shunt sensing terminal that correlates to —OUT. Click OK button to
proceed to next step.

16.The text window reads LCURR ZERO Adjust R83. Adjust output current until DVM reads
voltage specified in Table 3-2 for LOW CURRENT ZERO, then click OK button.

17.The text window reads CURR ZERO. Using the fine adjust < and > buttons, adjust output until
DVM reads voltage specified in Table 3-2 for MAIN CURRENT ZERO, then click OK button.

18.The text window reads CURR MAX. Using the coarse << and >> and fine < and > buttons,
adjust output current until DVM reads voltage specified in Table 3-2 for HIGH CURRENT
ACCURACY, then click OK button.

19.The text window reads CURR MIN. Using the coarse << and >> and fine < and > buttons,
adjust output current until DVM reads voltage specified in Table 3-2 for HIGH CURRENT
ACCURACY, then click OK button.

20.The text window reads LCURR MAX. Using the coarse << and >> and fine < and > buttons,
adjust output current until DVM reads voltage specified in Table 3-2 for LOW CURRENT
ACCURACY, then click OK button.

21.The text window reads LCURR MIN. Using the coarse << and >> and fine < and > buttons,
adjust output current until DVM reads voltage specified in Table 3-2 for LOW CURRENT
ACCURACY, then click OK button.

22.The text window reads CPR MAX. Using the coarse << and >> and fine < and > buttons,
adjust output current until DVM reads voltage specified in Table 3-2 for CURRENT PRO-
TECT ADJUST, then click OK button.

23.The text window reads CPR MIN - No Adjustment, check only. Click OK button to
proceed to next step.

24. The text window reads CAL Done, Disconnect Shunt. Click OK. Current calibration is
complete and automatically saved. Disconnect the external shunt and DVM.

BIT 4886 120419 3-13/(3-14 Blank)

4.1

41.1

41.1.1

SECTION 4 - OPERATION

GENERAL

The Kepco BOP Power Supply, with an installed BIT 4886 Interface Card, may be programmed
over the IEEE 488 standard communication bus (General Purpose Interface Bus, GPIB) using
SCPI (Standard Commands for Programmable Instruments). SCPI provides a common lan-
guage used in an automatic test system. (Refer to Table 2-3 for input/output signal allocations.)

CAUTION: DO NOT repeatedly toggle the circuit breaker/switch as this may cause unit to fault.
Set Power ON/OFF circuit breaker/switch on front panel to ON. If actuator does not
lock when released, wait a few seconds before trying again. The circuit breaker is
“trip-free” design; if overload exists, contacts cannot be held closed by actuator.

NOTE: Upon power up, the BOP output is set to off, VOLTage and CURRent are set to 0.
VOLTage and CURRent commands will not change the BOP output until the command
OUTPut ON is sent to the BIT 4886.

PROGRAMMING TECHNIQUES TO OPTIMIZE POWER SUPPLY PERFORMANCE

Proper programming techniques can offer significant response time improvement and reduce
undesirable transients at the power supply output. The key to performance optimization is to
minimize mode changes (voltage mode/current limit to current mode/voltage limit or vice versa).
Mode changes should be limited to changes in load conditions (to which the power supply will
respond automatically), or by programming the limit parameter when required by the user appli-
cation.

The proper way to program the power supply is to initially program the operating parameter to
zero and the complementary limit parameter to the desired maximum value. Subsequent com-
mands should change only the operating parameter. (The operating parameter is the parameter
that controls the output, e.g., voltage controls the output in voltage mode, current in current
mode.) The complementary limit parameter should be programmed only when there is a need to
change it.

SETTING BOP VOLTAGE AND CURRENT LIMITS

There are no voltage or current protection settings that can be accessed through the GPIB inter-
face. The limit controls on the BOP front panel (with the screw driver adjustment) can be used to
limit output voltage or current. The limit control settings from the BOP front panel are fixed and
are not computer-controllable. A common use of these controls is to set -V limit to 0 to prevent
the BOP from supplying a negative output voltage.

The BIT 4886 controls the BOP via two channels: the main channel, which is defined by the
operating mode, and the limit channel. In voltage mode, the main channel handles output volt-
age and the limit channel handles current limit. In current mode the main channel handles out-
put current and the limit channel handles voltage limit.

» If the BOP is operating in voltage mode, sending VOLT sxxxx controls the main channel,
and thus the output voltage (where s = sign, + or — and xxxx = the absolute value of out-
put voltage). Sending CURR sxxxx controls current limit (where s = sign, + or — and xxxx
= the absolute value of current limit.

BIT 4886 120419 4-1

41.1.2

41.1.3

4-2

« Ifthe BOP is operating in current mode, sending CURR sxxxx controls the main channel,
and thus the output current (where s = sign, + or — and xxxx = the absolute value of out-
put current). Sending VOLT sxxxx controls voltage limit (where s = sign, + or — and Xxxx
= the absolute value of voltage limit.

AUTOMATIC RANGE OPERATION.

The BIT 4886 has low and high ranges which are changed automatically when the main channel
set point is changed from a value less than the 1/4 of the units operating capability to a value
that is higher than 1/4 of the operating capability. The automatic gain change is enabled at
power up, or by either the *RST command or a mode change command (FUNC:MODE).

An automatic range change can result in undesirable transients when passing through the quar-
ter scale point as result of BIT 4886 card gain change, depending upon the load at the output of
the BOP. For example, with a 50V BOP in voltage mode, the quarter scale gain change is at
12.5V. When the unit is programmed from 12.5V to 12.6V, the gain of the BOP changes and a
spike may be seen at the BOP output. A transient may also occur when changing from -5V
volts to +50V as -5 volts is in the region between —12.5V and +12.5V and +50V is beyond the
guarter scale region. When the unit is programmed to remain in full scale, the gain change
does not occur and this eliminates the transient.

USING THE BIT 4886 TO PRODUCE A SOFTWARE-TIMED RAMP AT THE BOP OUTPUT

If the power supply is intended to operate in a test application that requires a set of specific out-
put voltages in a specific order and the number of points is more than the 1000 points available
in the BIT 4886 LIST command, a computer-controlled ramp can be used.

The recommended way to run a voltage ramp is to set the current limit to maximum plus at least
2% (or unit limit for max absolute value of the load). While in voltage mode, current limit is the
absolute value of the programmed current.

Before running the ramp it is recommended that the scale be set to full scale using
VOLT:RANG 1 to avoid any transients as explained in PAR. 4.1.1.2.

When installed, the Labview interactive example available on our web site creates a KpDCpwr
directory in Labview's user.lib. This sub-directory contains various programs such as KepcoDCPwr
Software Timed Ramp.vi. This vi is a software-timed linear ramp that is an example of using both
the range command and the limits in generating a ramp. There is also a KepcoDCPwr Software
Timed Current Ramp.vi for the same functionality in current mode. The BIT 4886 has a maximum
ramp step rate of 25 milliseconds.

BIT 4886 120419

41.2 MAKING SURE THE PREVIOUS COMMAND IS COMPLETE

Some SCPI commands require a flash memory update and can take an indeterminate amount
on time to complete. These commands are:

* *SAV

* MEM:PACK

* MEM:UPD

* CAL:COPY

* CAL:SAVE

* SYST:PASS:NEW
* SYST.:SEC:IMM

When sending these commands via the GPIB, these commands require a query to be added to
the command string to verify the previous command is complete. When the command is com-
plete, the unit updates the status byte and indicates MAV (Message Available, bit 4 - see Table
A-3) is true. MAV indicates that there is a response to be received by the computer, so when it
becomes set, the unit is ready for its next command after reading back the data from the query
that was added to the command string.

When sending the above commands via the RS 232 bus, data flow control must be enabled
(XON) for the unit to properly update flash memory.

The *ESR? query is ideal to check if the previous command is complete since it returns either a
1 or 0. It is important that it be sent as a part of the same string as the command that causes a
flash update. As an example, sending CAL:SAVE 12/31/2005;:*esr? or *esr?;:CAL:SAVE 12/31/
2005 are valid command strings. Sending the commands separately will not verify that the previ-
ous command is complete. Figure 4-1 is a program written in Visual C, a trademark of Microsoft
corporation, incorporating these techniques. The Visual C project for this example is part of the
Sample VISA programs for Visual Studio file that can be downloaded from Kepco's Website
(see www.kepcopower.com/drivers/drivers-dI3.htm#bit4886).

Failure to provide an adequate delay can result in:
« Commands that are not processed,
» The following command may be received in error, causing an error in the transmission,

» Unit lock-up requiring power cycling of the unit. If working via the GPIB bus, sending
Interface Clear and Device Clear followed by *RST will unlock the unit.

BIT 4886 120419 4-3

/* Kepco Sample Program using National Instruments VISA */
/* note : visa32.lib must be included in your project */
/ /
/* Read and Write to an Instrument Example */
/* */
/* This code demonstrates synchronous read and write commands to a */
/* GPIB, serial or message-based VXl instrument using VISA. */
/* */
/* The general flow of the code is */
/* Open Resource Manager */
/* Open VISA Session to an Instrument */
/* Write the ldentification Query Using viWrite */
/* Try to Read a Response With viRead */
/* Close the VISA Session */
/ /

#if defined(_MSC_VER) && !defined(_CRT_SECURE_NO_DEPRECATE)
#define _CRT_SECURE_NO_DEPRECATE
#endif

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include “visa.h”

static ViSession defaultRM;
static ViSession instr;

static ViStatus status;

static ViUInt32 retCount;

static ViUInt32 writeCount;
static unsigned char buffer[100];
static char stringinput[512];

/*

* In every source code or header file that you use it Is necessary to prototype
your VISA variables at the beginning of the file. You need to declare the VISA
session, VISA integers, VISA strings, VISA pointers, and VISA floating variables.
Remember that if you are prototyping variables that are to be used as part of the
VISA session that need this prototyping. As an example, above retCount has been
prototyped as a static variable to this particular module. It is an integer of
bit length 32. If you are uncertain how to declare your VISA prototypes refer

to the VISA help under the Section titled Type Assignments Table. The VISA

help is located in your NI-VISA directory or folder.

¥ % % % ok ok F %

*
N

int main(void)
{
/*
* First we must call viOpenDefaultRM to get the resource manager
* handle. We will store this handle in defaultRM.
*
/
status=viOpenDefaul tRM (&defaultRM);
if (status < VI_SUCCESS)
{
printf(“Could not open a session to the VISA Resource Manager!\n”);
exit (EXIT_FAILURE);

}

FIGURE 4-1. PROGRAMMING EXAMPLE TO VERIFY PREVIOUS COMMAND HAS COMPLETED
(SHEET 1 OF 3)

BIT 4886 120419

N
*

Now we will open a VISA session to a device at Primary Address 6.
You can use any address for your instrument. In this example we are
using GPIB Primary Address 6.

We must use the handle from viOpenDefaultRM and we must

also use a string that indicates which instrument to open. This
is called the instrument descriptor. The format for this string
can be found in the NI-VISA User Manual.

After opening a session to the device, we will get a handle to
the instrument which we will use in later VISA functions.

The two parameters in this function which are left blank are
reserved for future functionality. These two parameters are
given the value VI_NULL.

This example will also work for serial or VXl instruments by changing
the instrument descriptor from GPIBO::2::INSTR to ASRL1::INSTR or
VX10::2::INSTR depending on the necessary descriptor for your
instrument.

X ok R X b % ok b X b X % F X ok % ¥

*/
status = viOpen (defaultRM, “GPIBO::6::INSTR”, Venule, Venule, &instr);
if (status < VI_SUCCESS)

{
printf (“Cannot open a session to the device.\n”);
goto Close;
}
/*
* Set timeout value to 5000 milliseconds (5 seconds).
*/

status = viSetAttribute (instr, VI_ATTR_TMO_VALUE, 5000);

/*
* At this point we now have a session open to the instrument at
* Primary Address 6. We can use this session handle to write
an ASCI1 command to the instrument. We will use the viWrite function
* to send the string “*IDN?”, asking for the device®s identification.
*/
strcpy(stringinput,”*I1DN?”");
status = viWrite (instr, (ViBuf)stringinput, (ViUlnt32)strlen(stringinput), &writeCount);
if (status < VI_SUCCESS)
{

*

printf(“Error writing to the device\n”);
goto Close;

}

* Now we will attempt to read back a response from the device to

* the identification query that was sent. We will use the viRead

* function to acquire the data. We will try to read back 100 bytes.
* After the data has been read the response is displayed.

*/

status = viRead (instr, buffer, 100, &retCount);
if (status < VI_SUCCESS)

printf(“Error reading a response from the device\n™);

}

else
printf(“%*s\n”,retCount,buffer);

3

FIGURE 4-1. PROGRAMMING EXAMPLE TO VERIFY PREVIOUS COMMAND HAS COMPLETED
(SHEET 2 OF 3)

BIT 4886 120419

/*** Set Output Volt & Curr Values & enable output ***/

strcpy(stringinput, “volt 5;:curr 1;:outp on”);
status = viWrite(instr, (ViBuf)stringinput, (ViUlnt32)strlen(stringinput), &writeCount);
if (status < VI_SUCCESS)
{
printf(“Error writing to the device\n™);
goto Close;

}
printf(“ready - hit a key to continue\n™); getchar();

/*** send measure volt & curr cmnds & get response ***/

strcpy(stringinput, “meas:volt?;:meas:curr?”);
status = viWrite(instr, (ViBuf)stringinput, (ViUlnt32)strlen(stringinput), &writeCount);
if (status < VI_SUCCESS)
{
printf(“Error writing to the device\n”);
goto Close;

}

status = viRead(instr, buffer, 100, &retCount);

if (strchr(buffer, 10)) strchr(buffer, 10)[0] = 0; // terminate the buffer so we don"t get
trailing garbage

if (status < VI_SUCCESS)

{
printf(“Error reading a response from the device\n™);
3
else
{
printf(“Volt;Curr : %*s\n”, retCount, buffer);
3

printf(“ready - hit a key to continue\n™); getchar();
/*** send a reset ***/

printf(“resetting\n”); strcpy(stringinput, “*rst”);
status = viWrite(instr, (ViBuf)stringinput, (ViUlnt32)strlen(stringinput), &writeCount);
if (status < VI_SUCCESS)
{
printf(“Error writing to the device\n”);
goto Close;

3
printf(“ready - hit a key to continue\n™); getchar();

/*
* Now we will close the session to the instrument using
* viClose. This operation frees all system resources.
*/

Close:
printf(“Closing Sessions\nHit enter to continue.”);
fflush(stdin);
getchar();
status = viClose(instr);
status = viClose(defaultRM);

return O;

FIGURE 4-1. PROGRAMMING EXAMPLE TO VERIFY PREVIOUS COMMAND HAS COMPLETED
(SHEET 3 OF 3)

4-6 BIT 4886 120419

4.2 INITIALIZATION OF THE BIT 4886 CARD

When a BIT 4886 Card is installed in a BOP it must be initialized prior to use. The initialization of
the BOP BIT card can be performed via either GPIB or RS 232 ports. The process can be
accomplished using the supplied computer program via the GPIB (see PAR. 4.2.1) or by send-

ing SCPI commands using either the RS 232 or GPIB protocol (see PAR. 4.2.2).

42.1 INITIALIZATION USING CVI DRIVER - GPIB PORT ONLY

The initialization procedure uses the “soft” front panel which is part of the CVI driver for the BIT
4886. The CVI Driver can be downloaded from the Kepco website at: www.kepcopower.com/
drivers.htm by choosing the appropriate model and CVI configuration. The CVI Driver can not
be used via the RS 232 Port.

1. Unzip the files and doubleclick on setup.exe to install the driver. The bit_mdac folder will be

BIT 4886 120419

AN IS0 90{” CQHPANY

P R L e s ek

&l KEPCO.

THE POWER SUPPLIER ™
ENCE 1546

GFIE Address Errar

s & J
Select the GPIB address, COMMECT
aof the power supply. g I

Paower Supply Type

Contirue |

FIGURE 4-2. VISA DRIVER START-UP

added to the Start - Programs folder. Doubleclick bit_mdac.exe to run the program, and refer
to the visamdac.pdf in the bit_mdac folder for details about using the soft front panel.

Connect GPIB cable from the rear of the BOP with BIT 4886 Card installed to a Microsoft
Windows-based computer with National Instruments VISA software installed and verify that
BOP has standard PC-12 connector installed (Figure 2-2).

Install the VISA driver per the text file included with the driver. At the Start-up screen (Figure
4-2) set the correct GPIB Address and click CONNECT. Upon successful initialization the ini-
tialization window closes and the Power Supply Type field of the Start-up window (Figure 4-
2) shows BIT 4886. Click Continue.

4-7

4. Refer to Figure 4-3 and enter the following information:
e Select Model: e.g., BOP 100-2.
e Serial Number: Enter serial number found on the rear nameplate of BOP power supply.

e Option Number: If unit is a special (modified) unit, enter 5-digit suffix found in the Man-
ual Addendum

* Press the Initialize Card button
NOTE: |If initialization fails and an error message is displayed, repeat step 3, making

sure that the proper information is entered
5. After initialization, proceed to PAR. 3.2.2 to calibrate the upgraded unit.

——— Initilize Power Supply

Select Model
BOF 20-5

BOF 2010
BOF 20-20
BOP 366
BOP 3612
BOP 502
BOP 60-4
EOF 602
BOP B5-1
BOP 723
BOP 726
BOF 100-1
BOF 100-2
BOP 100-4
BOP 130-5
EOF 2001

Enter Power Supply Serial Mumber
Senal Mumber

It Special Power Supply Enter Option Mumber
Option Mumber |

Initialize Card I

FIGURE 4-3. BIT 4886 CARD INITIALIZATION USING VISA DRIVER

4.2.2 INITIALIZATION USING SCPI COMMANDS AND GPIB PORT

1. Insure a GPIB controller is connected to the BOP via the GPIB cable. Set BOP power to OFF
and set the address switches to the proper GPIB address to be used (refer to PAR 2.2.1, Fig-

ure 2-1, and Table 2-2 for addresses). Set BOP Power on; it may beep three times indicating
it is ready for initialization.

2. Using the GPIB interactive mode, set up the GPIB interface. For a National Instruments card,
it is done by the following steps.

A. Start the interactive GPIB program.

B. Type ibfind DEVx where x is the hex address of the BOP.

C. Type ibwrt "*idn?"

4-8 BIT 4886 120419

D. Type IBREAD 100. The GPIB will show the identifier string of the BOP as: KEPCO,
BOP 200-20, with additional characters indicating the revision level of the firmware. If unit
does not return 200,20 consult BIT 4886 Service Manual for procedure to restore the BIT
card to the factory default condition before continuing.

. Type IBWRT “SYST:PASS:CEN DEFAULT” to send the password initialization string.

Send the BOP configuration code using the following format: IBWRT “DIAG:PST X,Y”
where X is the rated model voltage in Volts and Y is rated model current in Amperes. As an
example only, for a BOP 130-2D (130V, 2A) you would type IBWRT “DIAG:PST 130,2”.

. Calibrate the unit per PAR. 3.2. Failure to calibrate the unit will result in the *TST? query

reporting a FLASH memory error.

4.2.3 INITIALIZATION USING SCPI COMMANDS AND RS 232 PORT
1. With BOP power on, refer to Figure 2-1 and set the baud rate using the address switches as
follows
SELECTOR SWITCH S1 SECTION
BAUD RATE (SIGNAL LINE)

A5 A4 A3 A2 Al
9.6k 0 0 1 1 0
19.2k 0 0 0 0 1
38.4k 0 0 0 1 1

NOTE: 0= CLOSED (ON) (Towards printed circuit board)

1 = OPEN (OFF) (Away from printed circuit board)

2. Set BOP power to OFF and set the address switches to the proper GPIB address to be used
(refer to PAR 2.2.1, Figure 2-1, and Table 2-2 for addresses). Set BOP Power on; it may
beep three times indicating it is ready for initialization.

3. Set up the RS 232 interface as indicated by the following steps.

A. Start the Hyperterminal

B. Set Hyperterminal to direct connect at baud rate selected in step 1 above.

C. Type *idn?

D. Unit responds with the identifier string of the BOP, e.g.,: KEPCO, BOP 200-20, with
additional characters indicating the revision level of the firmware. If unit does not return
200,20 consult BIT 4886 Service Manual for procedure to restore the BIT card to the fac-
tory default condition before continuing.

4. Send the password initialization string of: SYST:PASS:CEN DEFAULT.

5. Send the BOP configuration code using the following format: DIAG:PST X,Y where X is the

BIT 4886 120419

rated model voltage in Volts and Y is rated model current in Amperes. As an example only,
for a BOP 130-2D (130V, 2A) you would type 1BWRT “DIAG:PST 130,2".

. Calibrate the unit per PAR. 3.2. Failure to calibrate the unit will result in the *TST? query

reporting a FLASH memory error.

4-9

424

4.3

43.1

4.3.2

PASSWORD SETUP.

To change a password send:
SYST:PASS:CEN DEFAULT
SYST:PASS:NEW DEFAULT new_password
If the password is lost, contact the factory

BUILT IN TEST

The BIT 4886 card is designed to perform periodic testing of itself, power up testing and com-
manded testing. The testing is reported to the operator both by errors placed in the SCPI error
gueue and by issuing audible beeps.

The driver and demonstration soft panel which can be downloaded from the Kepco website at:
www.kepcopower.com/drivers.htm provide an easy way to verify BIT 4886 performance. A
description of the driver is included as an Adobe Acrobat ™ PDF file.

POWER-UP TEST

The power up testing of the BIT 4886 is similar to the *TST command (PAR. A.16). Portions of
the card are verified on power-up and errors are indicated by the beep codes listed in Table 4-1.
The failed test is repeated indefinitely. The power-up test can be bypassed by placing all DIP
switch positions of address switch S1 to up (ON, 1). Once bypassed, the unit beeps on and off
at equal intervals to indicate the address switches are set to 1 and the unit is waiting for the
address switches to be set to a valid GPIB address.

CONFIDENCE TEST

The SCPI command *TST? Is used to perform a confidence test of the interface. It verifies the
microprocessor memory, the timer, optical buffer and reference of the BIT 4886 card. It does not
affect the output of the BOP. This command returns a 0 for pass and number from 1 through
1023 to indicate the cause of the error. The test executes each of the subtests even when any
one fails. If any test fails a bit is set in the error code which is returned to the user. The error
codes returned are listed in Table 4-1

TABLE 4-1. BUILT-IN TEST ERROR CODES

TEST ACTIVE ERROR CODES
MEANING

*tst? DIAG:TST? BIT VALUE BEEPS

Yes Yes 0 Pass (No error)

Yes Yes 0 1 1 ROM error

Yes Yes 1 2 1 RAM error

Yes Yes 2 4 2 FLASH error -- Perform calibration to correct
Yes Yes 3 8 3 Optical Buffer Error

Yes Yes 4 16 6 Digital Pot error

No Yes 5 32 5 Loop Back Test error

No Yes 6 64 Max Voltage Output error

No Yes 7 128 Min Voltage Output error

No Yes 8 256 1/4 Scale Voltage error

No Yes 9 512 1/4 Scale Voltage Readback error

4-10

BIT 4886 120419

4.3.3 BOP TEST

The DIAG:TST? Command performs a test of the BOP instrument. The test includes the BIT
4886 internal tests of the DAC (Digital to Analog Converter), Limit and Op Amp circuits. If suc-
cessful it programs the BOP in voltage mode to the positive and negative limits of the device. It
also verifies the Limit operation of the unit in current mode by setting the unit for the rated maxi-
mum current delivery and verifies that the voltage limit set at one volt operates correctly. It also
tests the readback voltages in both high and low scales.

CAUTION: TO AVOID DAMAGE TO THE LOAD, DISCONNECT THE LOAD BEFORE ISSU-
ING THIS COMMAND. (DURING THE SELF-TEST, THE BOP IS PRO-
GRAMMED TO FULL SCALE POSITIVE AND FULL SCALE NEGATIVE
OUTPUT))

This command returns a 0 for pass, or a number from 1 through 1023 to indicate the cause of
the error. The test executes each of the subtests even when any one fails. If any test fails, a bit
is set in the error code which is returned to the user. The error codes returned are listed in Table
4-1.

4.4 IEEE 488 (GPIB) BUS PROTOCOL
Table 4-2 defines the interface capabilities of the Interface Card (Talker/Listener) relative to the

IEEE 488 (GPIB) bus (reference document ANSI/IEEE Std 488: IEEE Standard Digital Interface for
Programmable Instrumentation) communicating with a Host Computer—Controller (Talker/Lis-

tener).
TABLE 4-2. |IEEE 488 (GPIB) BUS INTERFACE FUNCTIONS
SUBSET
FUNCTION SYMBOL COMMENTS
Source Handshake SH1 Complete Capability (Interface can receive multiline messages).
Acceptor Handshake AH1 Complete Capability (Interface can receive multiline messages).
Talker T6 Basic talker, serial poll, unaddress if MLA (My Listen Address) (one-byte
address).
Listener L4 Basic listener, unaddress if MTA (My Talk Address) (one-byte address).
Service Request SR1 Complete Ca_pab|||ty. The |nt_e_n‘ace sets the SRQ line true if there is an
enabled service request condition.
Remote/Local RL2 No Local lock-out.
Parallel Poll PPO No Capability.
Device Clear DC1 Complete Capablllty. Controller sends DCL (Device Clear) and SDC
(Selected Device Clear) to selected power supply.
Device Trigger DT1 Complete Capability.
Controller (60] No Capability.

Tables 4-3 and 4-4 define the messages sent to the Interface Card, or received by the Interface
Card, via the IEEE 488 bus in IEEE 488 command mode and IEEE 488 data mode, respectively.
These messages are enabled during the “handshake” cycle, with the Interface Card operating
as either a Talker or a Listener.

BIT 4886 120419 4-11

4.5

RS232-C OPERATION

The BIT 4886 card allows the BOP to be operated via an RS232-C terminal, or from a PC using
a terminal emulation program. The default settings are as follows:

e Baud rate: 9600

o Parity: None

e DataBits 8
« StopBits 1
 Echo ON

+ XON OFF

To change echo or XON/XOFF, refer to PAR. 4.5.2.

TABLE 4-3. IEEE 488 (GPIB) BUS COMMAND MODE MESSAGES
MNEMONIC MESSAGE DESCRIPTION COMMENTS

ATN Attention Received

DAC Data accepted Received or Sent

DAV Data Valid Received or Sent

DCL Device Clear Received

GET Group Executive Trigger Received

IFC Interface Clear Received

MLA My Listen Address Received

MTA My Talk Address Received

OTA Other Talk Address Received

RFD Ready for Data Received or Sent

SDC Selected Device Clear Received

SPD Serial Poll Disable Received

SPE Serial Poll Enable Received

SRQ Service Request Sent

UNL Unlisten Received

UNT Untalk Received

4-12

BIT 4886 120419

TABLE 4-4. |IEEE 488 (GPIB) BUS DATA MODE MESSAGES

MNEMONIC MESSAGE DESCRIPTION COMMENTS
DAB Data Byte Received or Sent
END End Received or Sent
EOS End of String Received or Sent
RQS Request Service Sent
STB Status Byte Sent

45.1

45.2

SERIAL INTERFACE

The serial interface behaves like the GPIB interface in that the command is parsed after receiv-
ing a control character of either a Line Feed or Carriage Return. The serial interface supports six
special control characters. The six special control characters are:

Escape (1Bp) Causes the input buffer to be cleared. This character is used to ensure
that the buffer is empty when the host powers on since it is possible
that the Interface Card was previously powered on and received some
characters prior to the initialization of the host computer.

Backspace (08 Causes the last character in the input buffer to be removed from the
input buffer queue.

Carriage Return (ODy) Causes the input buffer to be parsed by the BOP.
Line Feed (0Ay) Causes the input buffer to be parsed by the BOP.
RS 232 IMPLEMENTATION

The following paragraphs are provided to help the user understand how the RS 232 serial inter-
face is implemented in the BIT 4886. Since the RS 232 protocol does not use a parity bit, the
echo mode is the default method used to ensure reliable communication between the command
originator (computer) and the BIT 4886, thus avoiding a more complex “handshake” protocol.

When the BIT 4886 is in the RS 232 echo mode it returns all data sent to the host controller. The
BIT 4886 provides one additional option that allows handshake communication: the XON XOFF
method. In standard echo mode the controller must verify that each character is echoed back by
the BIT 4886. As shown in Figure 4-4, there are times when the BIT 4886 does not echo back
the character from the controller, requiring that the controller resend the character. By using the
handshake option (XON XOFF) the host controller can ensure that serial data interrupts occur-
ring after parsing of the incoming message do not result in lost data.

Figure 4-4 illustrates the default echo mode and the XON XOFF method described in the follow-
ing paragraphs.

BIT 4886 120419 4-13

PROCESSING PROCESSING

DELAY DELAY
VAN 2N VAN
FROM POWER SUPPLY
TO COMMAND ORIGINATOR §E> VvOLT 10 =& §F> CURR 1 ¢ g E>
FROM COMMAND ORIGINATOR VOLT 10¢¢% CURR 1 5§

3042536

4-14

TO POWER SUPPLY

XON /XOFF
(NO ECHO)

ZOx
mTMOx
ZOx
MTMOx
ZOx

FIGURE 4-4. RS 232 IMPLEMENTATION

Only seven control characters (characters between 00y and 1Fy) are acknowledged by the BIT
4886:

» Carriage Return (CR, 0Dy)
* Line Feed (LF, 0Ay)

* Back Space (BS, 08)

* Escape (ESC, 01By)

« XON (011,

. XOFF (013y)

CAN (018}

BS deletes the last character entered, with the exception of CR or LF characters. Either the CR
or LF character acts as the line terminator, initiating parsing of the ASCII data sent to the BIT
4886 by the command originator. When the line is parsed and the commands are sent to the
analog processor, the BIT 4886 sends the line terminator sequence CR LF to the command
originator.

The ESC character is used for synchronization, causing the BIT 4886 to reset its input buffer
and return a CR LF sequence.

The XON character enables the transmitter if XON/XOFF flow control is enabled (see PAR.
4.5.2.2).

The XOFF character stops data transmission if XON/XOFF flow control is enabled (see PAR.
4.5.2.2).

The CAN character resets the receive and transmit pointers and queues.

CAUTION: When the serial port has received an XOFF, the error message -400, QUE
error will be placed in the queue to indicate the loss of transmitted informa-
tion due to a received XOFF character. When XON is received, the unit will
transmit all data in it's buffer followed by the exclamation character (!). This
(1) character is not part of any message from the BIT 4886 and indicates the
transmission buffer has been cleared and the BIT 4886 is idle.

BIT 4886 120419

45.2.1

45.2.2

45.2.3

All non-control characters are sent via the serial port of the command originator. The control
character BS is echoed as BS Space BS. Only the first control character is returned in response
to either a CR LF or LF CR character sequence (see Figure 4-4).

ECHO MODE

Echo mode is one method of ensuring data is transferred without errors. This mode should only
be enabled when errors in operation are detected. Refer to PAR. B.76 to change the setting.

Each byte (character) is echoed back to the sender where it is verified as the same character
that was just sent. If the wrong character is echoed back, sending the ESC character clears the
line to allow retransmission of the character. It is important that CR and LF characters are NOT
sent until the verification process is complete.

When working in echo mode, it is possible to receive the NAK (15 hex) from the BIT 4886. This
indicates an unknown quantity of echoed characters have been lost due to a queue overflow
problem. The error queue will also contain the -400, QUE error message, To prevent this, please
insure the received data string does not exceed 127 characters between line terminators and no
more than four queries are sent between line terminators in SCPI mode of operation

All non-control characters are sent via the serial port of the command originator.
XON XOFF METHOD

The XON XOFF method allows the BIT 4886 to control when the command originator is allowed
to send data. The command originator can only send data after the XON (transmission on) char-
acter (011y) has been received; the command originator stops sending data after receiving the
XOFF (transmission off) character (013y), and waits until the XON character is received before
sending additional data. Refer to PAR. B.78 to change the setting.

Control characters, either CR or LF, are returned as XOFF CR if echo mode is on, and as XOFF
if echo mode is off. XOFF stops data from the command originator and the BIT 4886 returns the
normal sequence of CR LF (if echo mode is enabled).

ISOLATING RS 232 COMMUNICATION PROBLEMS

A Loop Back test can be executed to aid in isolating RS 232 communication problems. The test
is executed via a SCPI command sent over the GPIB interface.

1. Send the command DIAG:LBT? to the unit via the GPIB interface with the Loop Back Test
connector (Kepco P/N 195-0111) NOT installed. The response sent over the GPIB will be
FAILED.

2. Install the Loop Back Test connector (Kepco P/N 195-0111) into the RS 232 port; if this con-
nector is not available, skip this step and proceed to step 3. Send DIAG:LBT? again and
read back the answer. if the response is PASSED, the power supply is operating properly. If
the response is FAILED, the unit requires repair.

BIT 4886 120419 4-15

45.3

4.6

4.6.1

4.6.2

4-16

3. To test the integrity of the cable assembly connecting the BIT 4886 RS 232 port to the com-
puter, remove the Loop Back test connector from the BIT 4886 RS 232 port and connect the
cable in its place. With the DB9 adapter installed on the opposite end of the cable, connect a
short jumper wire between pins 2 and 3 of the adapter connector and repeat the test of step
2 above. If the response is FAILED, the cord is either an improper type (not null modem) or
defective. If the response is PASSED, the cable is correct; remove the jumper and reconnect
the cable to the computer.

4. If the loop back connector was not available and steps 1 And 3 were completed successfully,
contact Kepco to obtain loop back connector P/N 195-0111 and rerun the test. If each of the
above steps is completed successfully, the problem lies in the computer hardware and/or
software. If the serial communication is monitored at the computer end, every DIAG:LBT?
command will cause the IDN response to be sent to the computer.

USING SCPI COMMANDS FOR RS 232 COMMUNICATION.

The unit must be in remote mode before RS 232 commands affecting the output can be exe-
cuted (e.g., VOLT 10;0UTP ON). This can be accomplished by sending SYST:REM ON prior to
sending any commands that affect the power supply output. (See PAR. B.87 and Figure B-7)

SCPI PROGRAMMING

SCPI (Standard Commands for Programmable Instruments) is a programming language con-
forming to the protocols and standards established by IEEE 488.2 (reference document ANSI/
IEEE Std 488.2, IEEE Standard Codes, Formats, Protocols, and Common Commands). SCPI com-
mands are sent to the Interface Card as output strings within the selected programming lan-
guage (PASCAL, BASIC, etc.) in accordance with the manufacturer’s requirements for the
particular GPIB interface card used.

Different programming languages (e.g., BASIC, C, PASCAL, etc.) have different ways of repre-
senting data that is to be put on the IEEE 488 bus. It is up to the programmer to determine how
to output the character sequence required for the programming language used. Address infor-
mation (GPIB address) must be included before the command sequence. (See PAR. 2.2.1 to
establish the Interface Card GPIB address.)

SCPI MESSAGES

There are two kinds of SCPI messages: program messages from controller to power supply,
and response messages from the power supply to the controller. Program messages consist of
one or more properly formatted commands/queries and instruct the power supply to perform an
action; the controller may send a program message at any time. Response messages consist of
formatted data; the data can contain information regarding operating parameters, power supply
state, status, or error conditions.

COMMON COMMANDS/QUERIES

Common commands and queries are defined by the IEEE 488.2 standard to perform overall
power supply functions (such as identification, status, or synchronization) unrelated to specific
power supply operation (such as setting voltage/current). Common commands and queries are
preceded by an asterisk (*) and are defined and explained in Appendix A. Refer also to syntax
considerations (PARs. 4.6.2 through 4.6.5).

BIT 4886 120419

4.6.3

SCPI SUBSYSTEM COMMAND/QUERY STRUCTURE

Subsystem commands/queries are related to specific power supply functions (such as setting
output voltage, current limit, etc.) Figure 4-5 is a tree diagram illustrating the structure of SCPI
subsystem commands used in the Interface Card with the “root” at the left side, and specific
commands forming the branches. The following paragraphs introduce the subsystems; subsys-
tem commands that are defined and explained in Appendix B.

ROOT : (colon)

——INITiate subsystem
INITiate
[:IMMediate]
:CONTinuous

r—MEASure subsystem
MEASure
:CURRent?
:VOLTage?

——[SOURCce:] subsystem
[SOURCce:]
VOLTage
[:LEVel]
[:IMMediate]
:TRIGgered
:MODE (LIST|FIX|TRANS val)
‘RANGe
‘RANGe:AUTO
CURRent
[:LEVel]
[:IMMediate]
‘TRIGgered
:MODE (LIST|FIX|TRANS val)
:RANGe
:RANGe:AUTO
FUNCtion
:MODE (VOLT|CURR)
‘TRIGgered

——OUTPut subsystem
OUTPut
[:STATe] ON or OFF

FIGURE 4-5.

4.6.3.1 INITIATE SUBSYSTEM

—CALibrate subsystem
CALibrate
:STATus <boolean>
:STATus?
VOLT
:LEVel (MIN | MAX, ZERO)
[:DATA] val
GAIN (UP | DOWN)
VPR (MIN | MAX)
:CPR (MIN | MAX)

:CURR
:LEVel (MIN | MAX, ZERO)
[:DATA] val
:GAIN (UP | DOWN)
:DPOT val

:LCURR (MIN | MAX, ZERO)
:LVOLT (MIN | MAX, ZERO)
:ZERO
'SAVE

—LIST subsystem
LIST

:CLEar

:COUNLt val

:COUNLt:SKIP val

:CURRent val,val
:POINts?

:DIRection (UP|DOWN)

:DWELI val,val
:POINts?

:GENeration (SEQ|DSEQ)

:QUERYy val

:VOLTage val,val
:POINts?

:SEQuence val,val

—STATus subsystem
STATus
:OPERation
:CONDition?
:ENABIle
[:EVENTt]?
:PRESet
:QUEStionable
:CONDition?
:ENABIle
[:EVEN{]?

—SYSTem subsystem
SYSTem
:BEEP
:COM
:SER
:ECHO, ?
:PACE, ?
:ERRor
[:NEXT]?
:CODE?
[:NEXT]?
ALL?
:PASSword
[:CENADble] (code)
:STATe?
:CDISable (code)
:NEW (OLD | NEW)
:SECUrity
:IMMediate
‘REM, ?
:SET
‘VERSion?

TREE DIAGRAM OF SCPI COMMANDS USED WITH BIT 4886 INTERFACE CARD

This subsystem enables the trigger system. When a trigger is enabled, the triggering action will
occur upon receipt of a GPIB <GET>, *TRG or TRIGger command. If a trigger circuit is not
enabled, all trigger commands are ignored.

BIT 4886 120419

4-17

4.6.3.2

4.6.3.3

4.6.3.4

4.6.3.5

4.6.3.5.1

4-18

MEASURE SUBSYSTEM

This query subsystem returns the voltage and current measured at the power supply's output
terminals.

[SOURCE:]VOLTAGE AND [SOURCE:]CURRENT SUBSYSTEMS
These subsystems program the output voltage and current of the power supply.
OUTPUT SUBSYSTEM

This subsystem enables/disables the power supply output. Voltage and current are determined
by the combination of SOURCE subsystem VOLTage and CURRent commands and the load.

LIST SUBSYSTEM

The LIST subsystem is used to generate transients, waveforms and execute a series of steps
repeatedly. Up to 1002 power supply settings can be stored temporarily. Each setting consists of
either a voltage or current value (depending on whether the power supply has been set to Volt-
age or Current mode), and a corresponding dwell time (the duration those settings are in effect).
These settings may be executed in sequence as they are entered, or executed in a user-deter-
mined sequence that also allows individual settings to be repeated more than once. In addition,
the entire sequence may be repeated for a specific number of times, or run indefinitely until
commanded to stop. The sequence can also be run in reverse order to produce inverted wave-
forms. The following paragraphs provide guidance for using the list commands.

REQUIRED LIST COMMANDS

There are only five LIST commands, plus either the VOLT:MODE or CURR:MODE command,
that are needed to create and execute a list. Use of these required commands is illustrated in
Figure B-2 which shows the creation of sawtooth and triangular waveforms. LIST commands
are not accepted while a list is running. Send VOLT:MODE FIX (PAR. B.59) or CURR:MODE
FIX (PAR. B.50) to stop the list. A list remains in memory until the power is cycled or the
LIST:CLEAR command is processed. Therefore, if the original list is unchanged, additional com-
mands can be added to the end of the list without resending all the commands. However, to
change parameters of one or more commands within the list, send LIST:CLEAR and then
resend the entire list including the changed parameters. To execute the list again, either
VOLT:MODE LIST or CURR:MODE LIST must be sent again.

LIST:VOLT (PAR. B.45) or LIST:CURR (PAR. B.31). These commands establish the points
(steps) of a list which program output voltage or current. A list can only be either a voltage list or
a current list, so the points in a list must be made with either LIST:VOLT XXXX or LIST: CURR
XXXX. Mixing of these commands within a list is not allowed.

LIST:CLEAR (PAR. B.26). Always precede a new list with this command. A list remains in mem-
ory until the power is cycled or the LIST:CLEAR command is processed.

LIST.DWELL (PAR. B.36). Defines the dwell time for each point in a list. In many instances it is
easier to use one dwell time and repeat a specific point multiple times to generate longer dura-
tion pulses. Remember, if more than one LIST:DWELL is sent, there must be a LIST.DWELL for
each voltage or current point in the list.

BIT 4886 120419

4.6.3.5.2

4.6.3.5.3

4.6.3.5.4

4.6.3.6

4.6.3.7

LIST:COUNT (PAR. B.27) Defines how many times a list is executed. 0 equals indefinite; when
a count of 0 is used, either *RST, VOLT:MODE FIX or CURR:MODE FIX must be used to stop
the list. *RST will cause the output to be set off and the unit is set to Voltage mode. VOLT:MODE
FIX or CURR:MODE FIX stops the list immediately; the point being executed when the list is
stopped will be present at the BOP output.

OTHER REQUIRED COMMANDS

VOLT:MODE LIST (PAR. B.59) or CURR:MODE LIST (PAR. B.50). These commands start the
list and VOLT:MODE FIX (PAR. B.59) or CURR:MODE FIX (PAR. B.50) stop the list. LIST com-
mands are not accepted while a list is running. If LIST:COUNT is between 1 and 255, when the
count decrements to 0, the list stops and the unit automatically moves to VOLT:MODE FIXED or
CURR:MODE FIXED state. To execute the list again, either VOLT:MODE LIST or CURR:MODE
LIST must be sent again.

OTHER USEFUL COMMANDS

LIST:COUNT:Skip (PAR. B.29). This command provides the ability to execute the initial points
only once whenever a list is run. It is used to set initial preconditions prior to running a repetitive
sequence.

LIST:DIR (PAR. B.34) This command changes the order of the list.

LIST:VOLT:POINTS? (PAR. B.47) or LIST.CURR:POINTS? (PAR. B.33) These queries return
the number of points in a list and provide a simple way to insure that all points entered were
properly processed and as intended.

OPTIONAL COMMANDS

Most commands have associated Queries (?) These are useful for troubleshooting/debugging
lists but are not needed in most cases.

The LIST:SEQ command is provided for backward compatibility. It is not recommended to be
used in any new designs as it may be eliminated at some point in the future.

STATUS SUBSYSTEM

This subsystem programs the power supply status register. The power supply has two groups of
status registers: Operation and Questionable. Each group consists of three registers: Condition,
Enable, and Event.

SYSTEM SUBSYSTEM

This subsystem is used to establish system settings Program Message Structure.

BIT 4886 120419 4-19

4.6.4 PROGRAM MESSAGE STRUCTURE

SCPI program messages (commands from controller to power supply) consist of one or more
message units ending in a message terminator (required by Kepco power modules). The message
terminator is not part of the syntax; it is defined by the way your programming language indi-
cates the end of a line (such as a “newline” or “end-of-line” character). The message unit is a
keyword consisting of a single command or query word followed by a message terminator (e.g.,
CURR?<NL> or TRIG<end-of-line>). The message unit may include a data parameter after the
keyword separated by a space; the parameter is usually numeric (e.g., CURR 5<NL>), but may
also be a string (e.g., OUTP ON<NL>). Figure 4-6 illustrates the message structure, showing
how message units are combined. The following subparagraphs explain each component of the
message structure.

NOTE: An alternative to using the message structure for multiple messages defined in the fol-

lowing paragraphs is to send each command as a separate line. In this case each com-
mand must use the full syntax shown in Appendix B.

KEYWORD

DATA SEPARATOR
ROOT SPECIFIER
DATA
MESSAGE UNIT SEPARATOR
DATA MESSAGE UNIT SEPARATOR
DATA SEPARATOR ROOT SPECIFIER
KEYWORD KEYWORD
KEYWORD SEPARATOR QUERY INDICATOR
KEYWORD MESSAGE TERMINATOR
INITIAL ROOT ‘
SPECIFIER IS \:CU R:LEV 3.5;:0UTP ON; :CURR?<NL>
OPTIONAL | || [|

T T T MESSAGE UNIT

FIGURE 4-6. MESSAGE STRUCTURE

46.41 KEYWORD

Keywords are instructions recognized by a decoder within the Interface Card, referred to as a
“parser.” Each keyword describes a command function; all keywords used by the Interface Card
are listed in Figure 4-5.

Each keyword has a long form and a short form. For the long form the word is spelled out com-
pletely (e.g. STATUS, OUTPUT, VOLTAGE, and TRIGGER are long form keywords). For the
short form only the first three or four letters of the long form are used (e.g., STAT, VOLT, OUTP,
and TRIG).

4-20 BIT 4886 120419

4.6.4.2

4.6.4.3

4.6.4.4

4.6.4.5

4.6.4.6

4.6.4.7

To identify the short form and long form in this manual, keywords are written in upper case let-
ters to represent the short form, followed by lower case letters indicating the long form (e.qg.,
IMMediate, EVENt, and OUTPut). The parser, however, is not sensitive to case (e.g., outp,
OutP, OUTPUL, ouTPut, or OUTp are all valid).

You must use the rules above when using keywords. Using an arbitrary short form such as
ENABL for ENAB (ENABLE) or IMME for IMM (IMMEDIATE) will result in an error. Regardless
of which form chosen, you must include all the letters required by that form.

KEYWORD SEPARATOR

If a command has two or more keywords, adjacent keywords must be separated by a colon (:)
which acts as the keyword separator (e.g., CURR:LEV:TRIG). The colon can also act as a root
specifier (paragraph 4.6.4.7).

QUERY INDICATOR

The question mark (?) following a keyword is a query indicator. This changes the command into
a query. If there is more than one keyword in the command, the query indicator follows the last
keyword. (e.g., VOLT? and MEAS : CURR?).

DATA

Some commands require data to accompany the keyword either in the form of a numeric value
or character string. Data always follows the last keyword of a command or query (e.g.,
VOLT:LEV:TRIG 14 or SOUR-VOLT? MAX.

DATA SEPARATOR

Data must be separated from the last keyword by a space (e.g., VOLT:LEV:TRIG 14 or
SOUR:VOLT? MAX.

MESSAGE UNIT SEPARATOR

When two or more message units are combined in a program message, they must be separated
by a semicolon (;) (e.g., VOLT 15;MEAS:VOLT? and CURR 12;CURR:TRIG 12.5).

ROOT SPECIFIER

The root specifier is a colon (;) that precedes the first keyword of a program message. This
places the parser at the root (top left, Figure 4-5) of the command tree. Note the difference
between using the colon as a keyword separator and a root specifier in the following examples:

VOLT:LEV:IMM 16 The root specifier is not necessary for the first keyword and has been
omitted. Both colons are keyword separators.

:CURR:LEV:IMM 4 Even though itis not required, it is still correct to include the root specifier
(first colon). The other two are keyword separators.

VOLT:LEV 6;:CURR:LEV 15 The root specifier for VOLT is not necessary because it is the
first keyword in the string and has not been included. The second colon is the root specifier for
CURR and is required; if it is missing an error will result. The first and third colons are keyword
separators.

SINIT ON;:TRIG; :MEAS:CURR?;VOLT? The first three colons are root specifiers. The
fourth colon is a keyword separator.

BIT 4886 120419 4-21

4.6.4.8

4.6.5

4-22

MESSAGE TERMINATOR

The message terminator defines the end of a message. Three message terminators are permit-
ted:

* new line (<NL>), ASCII 10 (decimal) or OA (hex)
» carriage return (<CR>), ASCII 13 (decimal) or OD (hex)
» both of the above (<CR> <NL>). If both are sent, the second is null and has no effect.

Your GPIB interface card software will automatically send a message terminator. For example,
the HP BASIC OUTPUT statement inserts <NL> after the last data byte. When binary data is
exchanged, <END> must be used. The combination <NL><END> terminator can be used for all
data except binary data.

NOTE: Kepco power modules require a message terminator at the end of each program mes-
sage. The examples shown in this manual assume a message terminator will be added
at the end of each message. Where a message terminator is shown it is represented
as <NL> regardless of the actual terminator character.

UNDERSTANDING THE COMMAND STRUCTURE

Understanding the command structure requires an understanding of the subsystem command
tree illustrated in Figure 4-5. The “root” is located at the top left corner of the diagram. The
parser goes to the root if:

* amessage terminator is recognized by the parser
» aroot specifier is recognized by the parser

Optional keywords are enclosed in brackets [] for identification; optional keywords can be
omitted and the power supply will respond as if they were included in the message. The root
level keyword [SOURce] is an optional keyword. Starting at the root, there are various
branches or paths corresponding to the subsystems. The root keywords for the Interface Card
are - INITiate, :MEASure, :OUTPut, [:SOURce], :STATus, and :SYSTem. Because the
[SOURce] keyword is optional, the parser moves the path to the next level, so that VOLTage,
CURRent, and FUNCtion commands are at the root level.

Each time the parser encounters a keyword separator, the parser moves to the next indented
level of the tree diagram. As an example, the STATus branch is a root level branch that has
three sub-branches: OPERation, PRESet, and QUEStionable. The following illustrates how
SCPI code is interpreted by the parser:

STAT:PRES<NL>
The parser returns to the root due to the message terminator.

STAT:OPER?;PRES<NL>

The parser moves one level in from STAT. The next command is expected at the level defined
by the colon in front of OPER?. Thus you can combine the following message units STAT :OPER?
and STAT:PRES;

STAT:OPER:COND?;ENAB 16<NL>

After the OPER:COND? message unit, the parser moves in one level from OPER, allowing the
abbreviated notation for STAT : OPER : ENAB.

BIT 4886 120419

4.6.6

4.6.7

PROGRAM MESSAGE SYNTAX SUMMARY
« Common commands begin with an asterisk (*).
» Queries end with a question mark (?).

» Program messages consist of a root keyword and, in some cases, one or more message
units separated by a colon (:) followed by a message terminator. Several message units
of a program message may be separated by a semicolon (;) without repeating the root
keyword.

« If a program message has more than one message unit, then a colon (:) must precede
the next keyword in order to set the parser back to the root (otherwise the next keyword
will be taken as a subunit of the previous message unit).

e.g., the command meas:volt?;curr? will read output voltage and output current
since both volt? and curr? are interpreted as subunits of the meas command.

» Several commands may be sent as one message; a line feed terminates the message.
Commands sent together are separated by a semicolon (;). The first command in a mes-
sage starts at the root, therefor a colon (;) at the beginning is not mandatory.

e.g., the command meas:volt?;curr? will read output voltage and output current,
however the command meas:volt?; :curr? will read actual output voltage and pro-
grammed current since the colon preceding curr? indicates that curr? is not part of the
meas command and starts at the root.

* UPPER case letters in mnemonics are mandatory (short form). Lower case letters may
either be omitted, or must be specified completely (long form)
e.g., INSTrument (long form) has the same effect as INST (short form).

« Commands/queries may be given in upper/lower case (long form)
e.g., SoUrCe is allowed.

» Text shown between brackets [] is optional.
e.g., [SOUR:JVOLT[:LEV]:TRIG has the same effect as VOLT:TRIG

SCPI PROGRAM EXAMPLE

Figure 4-7 is an example of a program written in Visual C using SCPI commands to program a
BOP Power Supply. The Visual C project for this example is part of Kepco’s IVI-COM driver (see
www.kepcopower.com/drivers/drivers-dI3.htm#bit4886), Visual C examples. If it does not com-
pile due to undefined functions, the issue is related to the importing of the visa.lib file in your
project. This file is supplied and installed during the GPIB interface installation and may be
located in a different place than our supplied project and must be corrected.

The program illustrated is for a configuration using a National Instruments GPIB interface card.
(It will be necessary to consult the manufacturer’s data to achieve comparable functions with an
interface card from a different manufacturer.) This program sets output voltage (Voltage mode)
or voltage limit (Current mode) to 5V, and current limit (Voltage mode) or output current (Current
mode) to 1A, then reads the measured (actual) voltage and current, then prints the measure-
ments.

BIT 4886 120419 4-23

/* Kepco Sample Program using National Instruments VISA */

/* note : visa32.lib must be included in your project */
/ /
/* Read and Write to an Instrument Example */
/* */
/* This code demonstrates synchronous read and write commands to a */
/* GPIB, serial or message-based VXI instrument using VISA. */
/* */
/* The general flow of the code is */
/* Open Resource Manager */
/* Open VISA Session to an Instrument */
/* Write the ldentification Query Using viWrite */
/* Try to Read a Response With viRead */
/* Close the VISA Session */
/ /

#if defined(_MSC_VER) && !defined(_CRT_SECURE_NO_DEPRECATE)
#define _CRT_SECURE_NO_DEPRECATE
#endif

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include “visa.h”

static ViSession defaultRM;
static ViSession instr;

static ViStatus status;

static ViUInt32 retCount;

static ViUInt32 writeCount;
static unsigned char buffer[100];
static char stringinput[512];

*

In every source code or header file that you use it is necessary to prototype
your VISA variables at the beginning of the file. You need to declare the VISA
session, VISA integers, VISA strings, VISA pointers, and VISA floating variables.
Remember that if you are prototyping variables that are to be used as part of the
VISA session that need this prototyping. As an example, above retCount has been
prototyped as a static variable to this particular module. It is an integer of
bit length 32. If you are uncertain how to declare your VISA prototypes refer

to the VISA help under the Section titled Type Assignments Table. The VISA

help is located in your NI-VISA directory or folder.

FOX X X o ok ok X XN\

X
N

int main(void)
{
/*
* First we must call viOpenDefaultRM to get the resource manager
* handle. We will store this handle in defaultRM.
*
/
status=viOpenDefaultRM (&defaultRM);
if (status < VI_SUCCESS)
{

printf(“Could not open a session to the VISA Resource Manager!\n”);

FIGURE 4-7. TYPICAL EXAMPLE OF INTERFACE CARD PROGRAM USING SCPI COMMANDS
(SHEET 1 OF 4)

4-24 BIT 4886 120419

/*

* First we must call viOpenDefaultRM to get the resource manager
* handle. We will store this handle in defaultRM.

*/

status=viOpenDefaul tRM (&defaultRM);
if (status < VI_SUCCESS)

{

printf(*“Could not open a session to the VISA Resource Manager!\n);
exit (EXIT_FAILURE);

}

N
*

ook % X % 3 o o kX X X ok ok F % X X

*/

Now we will open a VISA session to a device at Primary Address 6.
You can use any address for your instrument. In this example we are
using GPIB Primary Address 6.

We must use the handle from viOpenDefaultRM and we must

also use a string that indicates which instrument to open. This
is called the instrument descriptor. The format for this string
can be found in the NI-VISA User Manual.

After opening a session to the device, we will get a handle to
the instrument which we will use in later VISA functions.

The two parameters in this function which are left blank are
reserved for future functionality. These two parameters are
given the value VI_NULL.

This example will also work for serial or VXI instruments by changing
the instrument descriptor from GPIBO::2::INSTR to ASRL1::INSTR or
VX10::2::INSTR depending on the necessary descriptor for your
instrument.

status = viOpen (defaultRM, “GPIBO::6::INSTR”, VI_NULL, VI_NULL, &instr);
if (status < VI_SUCCESS)

{

printf (“Cannot open a session to the device.\n”);
goto Close;

}

/*

* Set timeout value to 5000 milliseconds (5 seconds).

*/

status = viSetAttribute (instr, VI_ATTR_TMO_VALUE, 5000);

/*

*ox X X

*/

At this point we now have a session open to the instrument at
Primary Address 6. We can use this session handle to write

an ASCI1 command to the instrument. We will use the viWrite function
to send the string “*IDN?”, asking for the device"s identification.

strcpy(stringinput,”*IDN?”");
status = viWrite (instr, (ViBuf)stringinput, (ViUlnt32)strlen(stringinput), &writeCount);
if (status < VI_SUCCESS)

{

printf(“Error writing to the device\n”);

goto Close;

}

FIGURE 4-7.

BIT 4886 120419

TYPICAL EXAMPLE OF INTERFACE CARD PROGRAM USING SCPI COMMANDS
(SHEET 2 OF 4)

4-25

/*

* Now we will attempt to read back a response from the device to

* the identification query that was sent. We will use the viRead

* function to acquire the data. We will try to read back 100 bytes.
* After the data has been read the response is displayed.

*/

status = viRead (instr, buffer, 100, &retCount);
if (status < VI_SUCCESS)

{
printf(“Error reading a response from the device\n™);
3
else
{
printf(“%*s\n”, retCount,buffer);
3

/*** Set Output Volt & Curr Values & enable output ***/

strcpy(stringinput, “volt 5;:curr 1;:outp on”);
status = viWrite(instr, (ViBuf)stringinput, (ViUlnt32)strlen(stringinput), &writeCount);
if (status < VI_SUCCESS)
{
printf(“Error writing to the device\n™);
goto Close;

3
printf(“ready - hit a key to continue\n™); getchar();

/*** send measure volt & curr cmnds & get response ***/

strcpy(stringinput, “meas:volt?;:meas:curr?”);
status = viWrite(instr, (ViBuf)stringinput, (ViUlnt32)strlen(stringinput), &writeCount);
if (status < VI_SUCCESS)
{
printf(“Error writing to the device\n”);
goto Close;

}

status = viRead(instr, buffer, 100, &retCount);

if (strchr(buffer, 10)) strchr(buffer, 10)[0] = 0; // terminate the buffer so we don"t get
trailing garbage

if (status < VI_SUCCESS)

{
printf(“Error reading a response from the device\n™);
3
else
{
printf(“Volt;Curr : %*s\n”, retCount, buffer);
3

printf(“ready - hit a key to continue\n™); getchar();

FIGURE 4-7. TYPICAL EXAMPLE OF INTERFACE CARD PROGRAM USING SCPI COMMANDS
(SHEET 3 OF 4)

4-26 BIT 4886 120419

/*** send a reset ***/

printf(“resetting\n”); strcpy(stringinput, “*rst”);
status = viWrite(instr, (ViBuf)stringinput, (ViUlnt32)strlen(stringinput), &writeCount);
if (status < VI_SUCCESS)

{

}

printf(“Error writing to the device\n”);
goto Close;

printf(“ready - hit a key to continue\n’); getchar();

/*

* Now we will close the session to the instrument using
* viClose. This operation frees all system resources.

*/
Close:

printf(“Closing Sessions\nHit enter to continue.”);
fflush(stdin);

getchar();

status = viClose(instr);

status = viClose(defaultRM);

return O;

FIGURE 4-7. TYPICAL EXAMPLE OF INTERFACE CARD PROGRAM USING SCPI COMMANDS

4.7

4.7.1

(SHEET 4 OF 4)

ENHANCED OPERATION

The following paragraphs describe options that will permanently modify the behavior of the BIT
4886 and associated BOP power supply. Although these options use SCPI commands, they are
not intended to be used during normal programming of the BOP output.

The commands described in the following paragraphs affect only RAM variables. The power up
state of the variables is retrieved from the FLASH EEPROM. The command MEMORY:UPDATE
can be used to copy this RAM information to the FLASH EEPROM. The WINDOW variable is
stored using the command MEM:UPDATE SHUTDOWN and the other variables, including the
DIAG:SAV command, use the command MEMORY:UPDATE INTERFACE

ERROR DETECTION

The BIT 4886 card has the ability to alter the way the unit responds to detection of load and set-
tings errors. The default behavior is for the BIT 4886 to measure the main channel and verify
that it is within the specified channel tolerances of the BOP, setting the appropriate bits in the
Status Questionable register. This default behavior is established by the SYST:SEC:IMM com-
mand and the factory default window of 32 LSBs.

The default behavior can be modified using the DIAG:ERR, DIAG:ONL, DIAG:OFFL AND
DIAG:WIN commands listed in Table 4-5 so that device errors are generated for conditions such
as window exceeded, output current limit at setting and output current exceeding a hard limit.
These errors can also be used to force the unit to go to an output off state upon detecting the
errors. The behavior is altered, the new setting is stored in RAM and it remains in effect until a

BIT 4886 120419 4-27

4.7.2

4.7.3

4.7.4

4-28

power off/power on cycle. The settings can be saved for power up by sending the MEM-
ORY:UPDATE SHUTDOWN command. Error responses are listed in Table 4-5.

LIMIT CHANNEL CONTROL

The unit supports three limit settings for the output off state. The standard configuration is for the
limits to be set to the minimum levels which causes the output not to vary beyond the BOX limits
defined in the BOP manual. The limits can also be set to maximum or 110% of rated voltage or
current. This is useful for battery operation. These limit settings are established by the
DIAG:OUTPut command. With other types of devices, it is possible to set the output off limit
channels to be at any level by using the DIAG:OFFLimit commands to establish the limit for the
output off state. DIAG:OUTP ny (see Table 4-5) controls the limit DAC values when the output is
set to OFF; n = 0 is the default. This sets both voltage and current limit channels to 0 when the
output is off. n = 1 sets voltage limit to maximum when the output is off. n = 2 sets the current
limit to the maximum when the output is off. Bits 2 and 3 of the hex character allow the
DIAG:OFFLimit commands to establish a specific voltage limit and current limit, respectively,
when the output is off. Bits 0 and 2 or bits 1 and 3 should not be set at the same time since the
maximum setting will override the value specified by DIAG:OFFLimit. The SYST.SEC:IMM com-
mand sets DIAG:OUTP n = 0. The variables are stored in non-volatie EEPROM by the com-
mand MEMORY:UPDATE INTERFACE.

USING AND SAVING SYSTEM VARIABLES

The DIAG:SAV command prepares the variables established by the SYST:SET command see
(PAR. B.90) to be stored and used for subsequent power up cycles. However, executing
SYST.SEC:IMM (PAR. B.89) restores the following configuration for subsequent power up
cycles: LFO, DCO, ROO. In addition to initializing all the variables (except password) to the
default state, SYST.SEC:IMM clears the SAV setup area and performs a PACK of the memory
partitions (see PAR. 4.7.4).

Saving LF1 means that the unit will provide a line feed if the buffer is empty and a read is per-
formed. Saving LFO means that each string sent to the GPIB port causes a null string to be
transmitted. The null string is a single Line feed character. This command is useful during pro-
gram debug as a read without a query will not hold up the bus.

Saving DCO means that DCL and SDC have no effect on the device (power supply) except to
clear internal status registers. Saving DC1 means that DCL and SDC commands will function
the same as the *RST command: the output is set to 0 Volts, 0 Amperes, voltage mode is
selected and the output is set to OFF (unless ROL1 is also set).

Saving ROO causes the *RST command to set the output to 0 Volts and 0 Amps and sets output
to OFF, requiring an OUTP ON command to be sent before voltage/current commands are pres-
ent at the output. Saving RO1 causes *RST to set the output to ON and sets the output to O
Volts and 0 Amps. Subsequent VOLT and CURR commands affect the output directly without
having to send OUTP ON. The OUTP ON and OUTP OFF commands function normally to turn
the output on and off.

FLASH MEMORY EEPROM OPERATION
The unit’s configuration, voltage and current, saved setups (*SAV and *RCL command) and Cal-
ibration values are stored in Flash Memory. Since the Flash EEPROM cannot be modified by

writing a single data byte, the block must be erased and then the data written into the correct
locations.

BIT 4886 120419

The BIt 4886 card accomplishes this by partitioning the Flash memory. As the amount of Flash
memory used becomes larger with each subsequent data update, the Flash memory can fill up
and needs to be compressed. The compression of the Flash EEPROM, called packing, is auto-
matically handled by the BIT 4886 microprocessor's code. The packing process can take a half
a second to accomplish. Because it is automatically executed, it can occur after any *SAV, Mem-
ory:UPDATE, or save of Calibration. When the memory is out of space, the internal micropro-
cessor copies the live data to a backup flash area, erases the main flash data area, copies the
current control variables into this clean space and then erases the backup flash area. The pack
process can take 500 milliseconds to complete. Packing is automatically invoked during power
up initialization if the BIT 4886 card finds that any storage area is over 90% utilized.

The following statistics are a guide as to when a MEMORY PACK will occur.

» Save area - Approximately 300 *SAV operations can be completed before a PACK will
occur automatically.

» Variable area - around 30 updates can be completed prior to an automatic PACK occur-
ring. Variable areas also include serial number updates and password updates.

» Calibration - 16 calibrations can be saved before a PACK is required.

If the memory is over 80% full, the user can also initiate packing by sending the command MEM-
ORY:PACK. Issuing a MEMORY:PACK command if the memory is less than 80% full will have
no effect. Because this command may take a long time to complete, it is recommended that the
user send MEMORY:PACK;*ESR?. The computer can then perform serial polls to wait for the
command to complete. The command will be complete when the serial poll byte indicates there
is data in the output buffer. (bit 4 set in the returned status byte).

TABLE 4-5. ENHANCED OPERATION - ERROR RESPONSE

COMMAND

QUERY

DESCRIPTION

DIAG:ERR:CURR xx
(xx =hex values from 00
to FF)

DIAG:ERR:CURR?

Allows both current protect and current limit functionality.

Bit 7 - when set will establish a fixed Current Limit level when output is ON.

Bit 6 - when set enables the current protection error logic.

Bit 5 - when set enables Current Protect error bit in ESR/ESE register

Bit 4 - when set causes the power up and reset state of the ESE register to
be as follows: ESE - 72 if bit 5 set, 8 if not set.

Bit 3 - when set allows a current protect error to create an error message of
“303 - Current above Protection limit.”

Bit 2 - when set causes a current protect error to set the output to off.

Bit 1 - when sets allows a current measurement in current mode to generate
a “Device Error” message.

Bit O - when set enables a current measurement error in current mode to
shut down unit.

The query provides one byte which indicates the current limit setting.

BIT 4886 120419

4-29

TABLE 4-5. ENHANCED OPERATION - ERROR RESPONSE (CONTINUED)

COMMAND

QUERY

DESCRIPTION

DIAG:ERR:VOLT xx

(xx =hex values from 00

to FF)

DIAG:ERR:VOLT?

Allows voltage protect and voltage limit functionality.

Bit 7 - when set establishes a fixed Voltage Limit level when output is ON.

Bit 6 - when set enables the voltage protection error logic.

Bit 3 - when set allows a voltage protect error to create an error message of

“304 - Voltage above Protection limit”

Bit 2 - when set causes a voltage protect error to set the output to off.

Bit 1 - when set allows a voltage measurement error in voltage mode to
generate a “Device Error” message.

Bit O - when set allows voltage “device error” message (see bit 1) to set the
output to off.

The query provides one byte which indicates the voltage limit setting.

DIAG:OFFLimit: CURR xx
(xx = decimal value)

DIAG:OFFLimit: CURR?

The decimal value allows the user to establish the actual current limit DAC (digi-
tal to analog converter) setting when the output is off and the unit is in voltage
mode. This variable is only used when bit 4 of the DIAG:OUTP register is set.
The value is calculated using the equation:

Current expected /(Current max * 1.1) * 256.
The DVS standard setting is 128 derived from (1.1 / 2.2) * 256.
The query provides one byte which indicates the actual DAC current limit setting.

DIAG:OFFLimit:VOLT xx
(xx = decimal value)

DIAG:OFFLimit:VOLT?

The decimal value allows the user to establish the actual voltage limit DAC (digi-
tal to analog converter) setting when the output is off and the unit is in current
mode. This variable is only used when bit 3 of the DIAG:OUTP register is set.
The value is calculated using the equation:

Voltage expected / Voltage max * 1.1) * 256
The DVS standard setting is 0.
The query provides one byte which indicates the actual DAC current limit setting.

DIAG:ONLimit: CURR xx
(xx = decimal value)

DIAG:ONLimit: CURR?

The decimal value allows the user to establish the actual current limit DAC (digi-
tal to analog converter) setting when the output is on and the unit is in voltage
mode. This variable is only used when bit 7 of the DIAG:ERR:CURR register is
set. The value is calculated using the equation:

Current expected /(Current max * 1.1) * 256.
The DVS standard setting is 128 derived from (1.1 /2.2) * 256.
The query provides one byte which indicates the actual DAC current limit setting.

DIAG:ONLimit:VOLT xx
(xx = decimal value)

DIAG:ONLimit:vVOLT?

The decimal value allows the user to establish the actual voltage limit DAC (digi-
tal to analog converter) setting when the output is on and the unit is in current
mode. This variable is only used when bit 7 of the DIAG:ERR:VOLT register is
set. The value is calculated using the equation:

Voltage expected / Voltage max * 1.1) * 256
The DVS standard setting is 0.
The query provides one byte which indicates the actual DAC current limit setting.

4-30

BIT 4886 120419

TABLE 4-5. ENHANCED OPERATION - ERROR RESPONSE (CONTINUED)

COMMAND

QUERY

DESCRIPTION

DIAG:OUTP n
(n = hex character)

DIAG:OUTP?

(Returns hex char-
acter)

DIAG:OUTP n controls the limit DAC values when the output is set to OFF. The
values can either be set to maximum or to a user determined limit value (using
the DIAG:OFFLimit commands. The SYST:SEC:IMM command sets
DIAG:OUTP n =0.

DIAG:OUTP 0 = the default. This sets both voltage and current limit channels to
0 when the output is off. The four bits of the hex character are defined as follows:

Bit 0 = 1 sets voltage limit to maximum when in Voltage mode and the output
is off.

Bit 1 = 1 sets current limit to maximum when in Current mode and the output
is off.

Bit 2 = 1 sets voltage limit to value determined by the DIAG:OFFLimit:VOLT

command when the output is off.

Bit 3 = 1 sets current limit to value determined by the DIAG:OFFLimit: CURR
command when the output is off.

For example, DIAG:OUTP 3 = sets both voltage and current limit to maximum.
This can be useful for battery applications where the limit channel can allow the
battery to discharge the battery voltage. Using both the maximum and
DIAG:OFFLimit options (e.g., bits 0 and 2) at the same time is not recommended
- the maximum value overrides the DIAG:OFFLimit setting.

DIAG:SAV n/a DIAG:SAV stores variables established by SYST:SET. (See PAR. 4.7.3 and
B.82.)
DIAG:WIN xx DIAG:WIN? Allows user to specify value in LSB'’s for error window used for detection of out-

(xx = hex value from 10
to 40)1

(Returns window
value xx (hex)

put voltage or output current measurement errors (default = 32). Error window
value can only be set between 16 (10 Hex) and 64 (40 Hex) using one two-digit
hex character (xx)l. Query returns 2-digit hex character xx.

BIT 4886 120419

4-31

TABLE 4-5. ENHANCED OPERATION - ERROR RESPONSE (CONTINUED)

COMMAND

QUERY

DESCRIPTION

DIAG:LEADING xx
(xx is the time in half mil-
liseconds increments)
(hex)

DIAG:LEADING?
returns xx (hex), the
time in half millisec-
onds increments)

xx establishes max dwell time for a two-step list. If the dwell time DD for the two-
step list exceeds xx, a step is inserted with voltage = 0V for (DD - xx). MSTS
default = 50.

Consider the following:

LIST:VOLT 0,5 Two step list, OV then 5V.
LIST:-DWEL .05 Dwell time of 50 ms
LIST:COUNT 0 Repeat continuously.
OUTP ON Output enabled.

VOLT:MODE LIST Run program
The above list would normally produce a continuous square wave, 50ms at 0V,
50mS at 5V (Fig A). If DIAG:LEADING 50 (40 ms) is issued, the square wave
changes to 60ms at 0V, 40mS at 5V as follows: the first 1/2 cycle = 50mS at 0V,
the second 1/2 cycle = 40mS (the limit set by DIAG:LEADING) at 5V, then 10mS
(50 - 40 = 10) at OV (Fig B). If LIST:VOLT 0,5 is changed to LIST:VOLT -5,5 both
1/2 cycles will show 10mS steps at 0V (Fig C).

PERIOD (100 MS) UNCHANGED

~a— BY DIAG:LEADING —
DWELL TIME
DD=0.05
= (50MS) -
A +5V
ov. = — Q
10MS STEP
4" ‘« ADDED
+5V
B LEADING
T xx=504
OV — (40MS)
+5V
LEADING LEADING
XX=50 | Xx=50 |
C HT
— (40MS) L— (40MS) U
e f—
-5V ~ ‘ ;
10MS STEPS
3042752 ADDED

1 The default window value of 32 indicates a 32 LSB margin for error during readback. The value for Readback is arrived at by taking
16 samples of voltage or current and averaging them. A readback error is produced when the calculated readback value (with cali-
bration constants applied) exceeds the maximum readback (calculated readback + error window) or minimum readback (calculated
readback — error window). Increasing the error window can avoid undesired errors. For example, in cases where the LIST command
is used to produce a square wave output, overshoot inherent in the characteristics of the power supply can sometimes cause the
readback average to increase enough to cause a readback error. Increasing the error window allows the square wave to be gener-
ated without producing an error.

4.7.4.1

CALIBRATION STORAGE

The BIT 4886 maintains the calibration tables in Flash Memory until a PACK is executed. There
are six calibration areas maintained in Flash Memory: Working, Prior, Oldest, Factory, Master,

and First.

The calibration can be copied to another area using the CAL:COPY command. The syntax is as
follows: CAL:COPY (source) (destination) where (source) and (destination) refer to the areas of
Flash memory where calibration data is stored, designated as: WORKing, PRlor, OLDest, FAC-
Tory, MASTer, FIRst. Source refers to the calibration area that is to be copied, destination to the
area that the calibration will be copied into.

4-32

BIT 4886 120419

The Master calibration should never be overwritten. Factory, Master, and First are set to the
same values when a BIT 4886 card is factory-installed in a BOP power supply. The Working cal-
ibration is the active calibration. Each time a CAL:SAV is executed, the values are saved in the
Working (active) area. At the same time, the values previously stored in Working are moved to
Prior, and the values previously stored in Prior are moved to Oldest. The values previously
stored in Oldest are no longer available. Table 4-6 illustrates calibration storage and the use of
the CAL:COPY command. An example is shown in PAR. 4.1.2

TABLE 4-6. CALIBRATION STORAGE

COMMAND WORKing PRIor OLDest FACTory MASTer FIRst
1. CAL:SAVE Cal 1 values factory cal. Master cal. First cal.
2. CAL:SAVE Cal 2 values | Cal 1 values No Change | No Change | No Change
3. CAL:SAVE Cal 3 values | Cal 2 values | Cal 1 values | No Change | No Change | No Change
4. CAL:SAVE Cal 4 values | Cal 3 values | Cal 2 values | No Change | No Change | No Change
5. CAL:COPY FACTory WORKing | factory cal. Cal 4 values | Cal 3values | No Change | No Change | No Change
6. CAL:COPY PRIor WORKing Cal 4 values | factory cal. Cal 4 values | No Change | No Change | No Change

BIT 4886 120419 4-33/(4-34 Blank)

APPENDIX A - SCPI COMMON COMMAND/QUERY DEFINITIONS

A.1 INTRODUCTION
This appendix defines the SCPI common commands and queries used with the BIT 4886 Interface
Card. Common commands and queries are preceded by an asterisk (*) and are defined and
explained in paragraphs A.2 through A.17, arranged in alphabetical order. Table A-1 provides a
quick reference of all SCPI common commands and queries used in the Interface Card.
TABLE A-1. IEEE 488.2 COMMAND/QUERY INDEX
COMMAND PAR. COMMAND PAR.
*CLS A2 *RST A.10
*ESE, ? A3,A4 *SAV Al
*ESR? A5 *SRE, ? A12,A13
*IDN? A6 *STB? Al4
*OPC A7 *TRG A15
*OPT? A8 *TST? A.16
*RCL A9 *WAI A7
*
A.2 *CLS — CLEAR STATUS COMMAND CL S
Syntax: *CLS
Description: Clears status data. Clears the error queue of the instrument. Forces power supply to “operation com-
plete idle” and “operation complete query” state. Clears all Event Registers summarized in Status Byte
Register without affecting the corresponding Enable Registers: Standard Event Status Register (ESR),
Operation Status Event Register, Questionable Status Event Register, and Status Byte Register
(STB). Related commands: *OPC. (See example, Figure A-1.)
*
A.3 *ESE — STANDARD EVENT STATUS ENABLE COMMAND ESE
Syntax: *ESE <integer> where <integer> = positive whole number: 0 to 255 per Table A-2.
Default Value: 0
Description: This command programs the standard Event Status Enable register bits. The contents function

as a mask to determine which events of the Event Status Register (ESR) are allowed to set the ESB
(Event Summary Bit) of the Status Byte Register. Enables the Standard events to be summarized in
the Status Byte register (1 = set = enable function, 0 = reset = disable function). All of the enabled
events of the standard Event Status Enable register are logically ORed to cause ESB (bit 5) of the Sta-
tus Byte Register to be set (1 = set = enable, 0 = reset = disable). (See example, Figure A-1.)

TABLE A-2. STANDARD EVENT STATUS ENABLE REGISTER AND STANDARD

BIT 4886 120419

EVENT STATUS REGISTER BITS

NU (Not Used)
CONDITION NU NU CME | EXE DDE | QUE NU OPC CME Command Error
EXE Execution Error
BIT 7 6 5 4 3 2 1 0 DDE Device Dependent Error
QUE Query Error
VALUE 128 64 32 16 8 4 2 1 OPC Operation Complete

A-1

A.4 *ESE? — STANDARD EVENT STATUS ENABLE QUERY *ESEf)

Syntax:

Description:

*ESE? Return value: Integer> value per Table A-2.

Returns the mask stored in the Standard Event Status Enable Register. Contents of Standard
Event Status Enable register (*ESE) determine which bits of Standard Event Status register (*ESR)
are enabled, allowing them to be summarized in the Status Byte register (*STB). All of the enabled
events of the Standard Event Status Enable Register are logically ORed to cause ESB (bit 5) of the
Status Byte Register to be set (1 = set = enable function, 0 = reset = disable function). (See example,
Figure A-1.)

*
A5 *ESR? — EVENT STATUS REGISTER QUERY ES R’)

Syntax:

Description:

*ESR?
Return value: <integer> (Value = contents of Event Status register as defined in Table A-2.)

Causes the power supply to return the contents of the Standard Event Status register. After it
has been read, the register is cleared. The Standard Event Status register bit configuration is
defined in Table A-2 (1 = set, 0 = reset). The error bits listed in Table A-2 are also related to error
codes produced during parsing of messages and to errors in the power supply (see PAR. B.80)

« Any 1xx type error sets the Command error bit (5) see.

« Any 2xx type error sets the Execution error bit (4).

* Any 3xx type error sets the Device error bit (3). The Device error bit will be set when Current Error
or Voltage Error is detected and the corresponding Status Questionable bit is set (see PAR. B.28).

e Any 4xx type error sets the Query error bit (2).

Related Commands: *CLS, *ESE, *OPC. (See example, Figure A-1.)

A.6 *IDN? — IDENTIFICATION QUERY *I DN’?

Syntax:

Description:

A-2

*IDN?
Return value: Character string

Identifies the instrument. This query requests identification. The power supply returns a string
which contains the manufacturer name, the model, the serial number and the firmware level. The
character string contains the following fields: <Manufacturer>, <Model>, <Voltage>, <Current>,
<Serial Number>, <Main revision>-<Flash revision> where: <Manufacturer> = KEPCO, <Model> =
BIT 4886, <Serial Number> = SSSSSS <date> = (see CAL:SAVE DATE, PAR. B.11) <Main revi-
sion=n.m, e.g, 1.0) ><Firmware revision>=n.m (n.m revision, e.g, 1.0) (See example, Figure A-1.)

BIT 4886 120419

*
A7 *OPC — OPERATION COMPLETE COMMAND OPC
Syntax: *OPC

Description: Causes power supply to set status bit O (Operation Complete) when pending operations are
complete This command sets Standard Event Status Register bit O (see Table A-2) to “1” when all pre-
vious commands have been executed and changes in output level have been completed. This com-
mand does not prevent processing of subsequent commands, but bit O will not be set until all pending
operations are completed. (1 = set = enable function, 0 = reset = disable function). (See example, Fig-
ure A-1.) As an example, the controller sends command(s), then sends *OPC. If controller then sends
*ESR?, the power supply responds with either a “0” (if the power supply is busy executing the pro-
grammed commands), or a “1” (if the previously programmed commands are complete). (See exam-
ple, Figure A-1.)

*CLS Power supply clears status data.

*ESE 60 Power supply enables bits 5, 4, 3 and 2, allowing command error, execution
error, device dependent error and query error to set the Event Status
Summary bit when an STB command is executed.

*ESE? Returns 60, (value of the mask) verifying that bits 5, 4, 3 and 2 are enabled.

*ES Unknown command will set command error (Bit 5).

*ESR? Returns 32 (bit 5 set), indicating Command Error has occurred since the last
time the register was read.

*IDN? Power supply returns: KEPCO, BIT 4886 100-2 123456 1.8-1.8

*OPC Allows status bit 0 to be set when pending operations complete

VOLT 21;CURR 3 Sets output voltage to 21V, output current to 3A

*ESR? Returns 129 (128 + 1, power on, bit 7 = 1, operation complete, bit 1 = 1)

*ESR? Returns 0 (event status register cleared by prior *ESR?)

VOLT 15;CURR 5;*ESR? Sets output voltage to 15V, output current to 5A, puts “1” on output bus when
command operations are complete.

*RST Power supply reset to power on default state.

*SRE 40 When ESB or QUES bits are set (Table A-3), the Request for Service bit will
be set.

*SRE? Returns the value of the mask (40).

*STB? For example, the Power supply responds with 96 (64 + 32) if MSS and the

Event Status Byte (Table A-3) summary bit have been set. The power
supply returns 00 if no bits have been set.

VOLT 25 Power supply voltage commanded to 25V.
VOLT:TRIG 12 Programs power supply voltage to 12V when *TRG received.
INIT Trigger event is initialized.
*TRG Power supply reverts to commanded output voltage of 12V.
** |_OAD DISCONNECTED
*TST? Power supply executes self test and responds with O if test completed

successfully, with 1 if test failed.

FIGURE A-1. GPIB COMMANDS

BIT 4886 120419 A-3

A.8 *OPT? — OPTIONS QUERY *O PT’)

Syntax:

Description:

*OPT?
Returns string determined by power supply model.

Causes the power supply to return an ASCII string which defines the functionality of the power
supply. The functionality is defined as follows:

STRING DATA MEANING

CAL Support for CALibrate is present.

RL1 Commands sent over GPIB cause unit to enter remote mode (except for MEASure).

MEM Indicates the number of memory steps supported.

LST Indicates the number of LIST steps supported.

A.9 *RCL — RECALL COMMAND *RCL

Syntax:

Description:

*RCL <integer> (1 to 99)

Restores power supply to previously defined levels of output voltage, output current and trig-
gers. This command selects one of the 99 power supply memory locations, each of which stores val-
ues for output current, and output voltage and trigger levels. Executing a *RCL recalls the previously
defined trigger settings from memory and places them in the trigger control section of the BIT 4886.
Executing a second *RCL will cause the values in the trigger control section to be moved to the bit
4886 output channel, allowing the power supply to operate with the recalled trigger information. The
following parameters are affected by *RCL: VOLT:TRIG, CURR:TRIG, and FUNC:MODE:TRIG.

A.10 *RST — RESET COMMAND *RST

Syntax:

Description:

*RST

Resets power supply to the power on default state. The power supply output set to off (see
DIAG:OUTP, Table 4-5, to establish the “off” state parameters) and the power supply is programmed to
the power on values of the following parameters: CURR[.LEV][:IMM] = 0, VOLT[.LEV][:IMM] = O,
MODE = VOLT. If the power supply is in either an overvoltage or overcurrent state, this condition is
reset by *RST. After sending *RST it is necessary to send OUTPUT ON for programmed values to
appear at the output. The *RST command always returns the mode to Voltage and the range to auto-
matic. (See example, Figure A-1.)

A.11 * SAV — SAVE COMMAND *SAV

Syntax:

Description:

*SAV <integer> (1 to 99)

Saves the present state of output voltage, output current and trigger values, to the specified
memory location. This command stores the present state of the power supply to one of 99 memory
locations in Flash Memory (see PAR. 4.7.4). The following parameters are stored by *SAV:
VOLT:-TRIG, CURR:TRIG, and FUNC:MODE:TRIG. The stored values can be restored by the *RCL
command.

A.12 *SRE — SERVICE REQUEST ENABLE COMMAND *SRE

Syntax:

Description:

A-4

*SRE<integer> where <integer> = value from 0 - 255 per Table A-3, except bit 6 cannot be pro-
grammed.

Sets the condition of the Service Request Enable register. The Service Request Enable register
determines which events of the Status Byte Register are summed into the MSS (Master Status Sum-
mary) and RQS (Request for Service) bits. RQS is the service request bit that is cleared by a serial
poll, while MSS is not cleared when read. A “1” (1 = set = enable, 0 = reset = disable) in any Service
Request Enable register bit position enables the corresponding Status Byte bit to set the RQS and
MSS bits. All the enabled Service Request Enable register bits then are logically ORed to cause Bit 6
of the Status Byte Register (MSS/RQS) to be set. Related Commands: *SRE?, *STB?. (See exam-
ple, Figure A-1.)

BIT 4886 120419

TABLE A-3. SERVICE REQUEST ENABLE AND STATUS BYTE REGISTER BITS

OPER Operation Status Summary
MSS ERR MSS Master Status Summary
CONDITION OPER ROS ESB MAV | QUES UE NU NU RQS Request for Service
Q Q ESB Event Status Byte summary

MAV Message available

BIT 7 6 5 4 3 2 1 0 QUES QUEStionable Status Summary
ERR QUE 1 or more errors occurred (see

VALUE 128 64 32 16 8 4 2 1 PAR. B.80)

NU (Not Used)

. *SRE?

A.13 *SRE? — SERVICE REQUEST ENABLE QUERY .
Syntax: *SRE? Response: <integer> = value from 0 - 255 per Table A-3.

Description: Reads the Service Enable Register. Used to determine which events of the Status Byte Register are

programmed to cause the power supply to generate a service request (1 = set = function enabled, 0 =
reset = function disabled). Related Commands: *SRE, *STB? (See example, Figure A-1.)

A.14 *STB? — STATUS BYTE REGISTER QUERY *STB r)

Syntax:

*STB? Response: <integer> value from 0 to 255 per Table A-3.

Description: Reads Status Byte Register without clearing it. This Query reads the Status Byte Register (bit 6 =

MSS) without clearing it (1 = set = function enabled, 0 = reset = function disabled). The register is
cleared only when subsequent action clears all set bits. MSS is set when the power supply has one
ore more reasons for requesting service. (A serial poll also reads the Status Byte Register, except that
bit 6 = RQS, not MSS; and RQS will be reset.) Related Commands: *SRE, *SRE?. (See example, Fig-
ure A-1.)

A.15 *TRG — TRIGGER COMMAND *TRG

Syntax:

*TRG

Description: Triggers the power supply to be commanded to preprogrammed values of output current and

voltage. When the trigger is armed (checked by examining WTG bit in Status Operational Condition
register), *TRG generates a trigger signal. The trigger will change the output of the power supply to
the output voltage and current levels specified by VOLT:TRIG and CURR:TRIG commands and clear
the WTG bit in the Status Operation Condition register. If INIT.CONT has been issued, the trigger sub-
system is immediately rearmed for subsequent triggers, and the WTG bit is again set to 1. *TRG or
GET are both addressed commands (only devices selected as listeners will execute the command).
Related Commands: ABOR, INIT, TRIG, CURR:TRIG, VOLT:TRIG. (See example, Figure A-1.)

*
A.16 *TST? — SELF TEST QUERY TSTr)
Syntax: *TST? Returned value: O or non-zero (0 = pass test, non-zero = fail test)
Description: Power Supply test. This query causes the power supply to do a self test and provide the controller

A.17 *WAI
Syntax:

with pass/fail results. A 0 is returned if the unit passes the test. If the unit fails, a number is returned to
indicate the cause of the error. The test executes each of the subtests even when any one fails. If any
test fails an error code bit is set which is returned to the user. The error codes returned are listed in
Table 4-1.

*
— WAIT-TO-CONTINUE COMMAND WAI
*WAI Response:

Description: Causes the power supply to wait until all previously issued commands and queries are com-

BIT 4886 120419

plete before executing subsequent commands or queries. This command can be used to guaran-
tee sequential execution of commands and queries. When all pending operations are complete (all
previous commands have been executed, changes in output level have been completed), the WAI
command is completed and execution of subsequent commands can continue.

A-5/(A-6 Blank)

APPENDIX B - SCPI COMMAND/QUERY DEFINITIONS

B.1 INTRODUCTION

This appendix defines the SCPI subsystem commands and queries used with the BIT 4886 Inter-
face Card. Subsystem commands are defined in PAR. B.4 through B.92, arranged in groups as they
appear in the tree diagram, Figure 4-5. Table B-1 provides a quick reference of all SCPI subsystem
commands and queries used in the Interface Card.

TABLE B-1. SCPI SUBSYSTEM COMMAND/QUERY INDEX

COMMAND PAR. COMMAND PAR.
CAL:CPR B.3 [SOUR:]LIST:VOLT:POIN? B.47
CAL:STAT, ? B.4,B.5 [SOUR]:CURR, ? B.48, B.49
CAL:CURR B.6 [SOUR]:CURR:MODE, ? B.50, B.51
CAL:DATA B.7 [SOUR]:CURR:RANG, ? B.52, B.53
CAL:DPOT B.8 [SOUR]:CURR:RANG:AUTO B.54
CAL:LCURR B.9 [SOUR]:CURR:TRIG? B.55, B.56
CAL:LVOLT B.10 [SOUR]:VOLT B.57, B.58
CAL:SAVE B.11 [SOUR]:VOLT:MODE, ? B.59, B.60
CAL:VOLT B.12 [SOUR]:VOLT:RANG, ? B.61, B.62
CAL:VPR B.13 [SOUR]:VOLT:RANG:AUTO B.63
CAL:ZERO B.14 [SOUR]:VOLT:TRIG B.64, B.65
INIT[:IMM] B.15 STAT:OPER:COND? B.66
INIT:CONT, ? B.16, B.17 STAT:OPER:ENAB, ? B.67, B.68
MEAS:CURR? B.18 STAT:OPER[:EVEN]? B.69
MEAS:VOLT? B.19 STAT:PRES B.70
OUTP[:STAT], ? B.20, B.21 STAT:QUES[:EVEN]? B.71
[SOUR:]JFUNC:MODE, ? B.22, B.23 STAT:QUES:COND? B.72
[SOUR:JFUNC:MODE:TRIG, ? B.24, B.25 STAT:QUES:ENAB, ? B.73,B.74
[SOUR:]LIST:CLE B.26 SYST:BEEP B.75
[SOUR:]LIST:COUN, ? B.27,B.28 SYST.COM:SER:ECHO, ? B.76, B.77
[SOUR:]LIST:COUN:SKIP, ? B.29, B.30 SYST.COM:SER:PACE, ? B.78, B.79
[SOUR:]LIST:CURR, ? B.31, B.32 SYST.ERR? B.80
[SOUR:]LIST:POIN? B.33 SYST.ERR:CODE? B.81, B.82
[SOUR:]LIST:DIR, ? B.34, B.35 SYST:PASS CEN, CDIS B.83, B.84
[SOUR:]LIST:-DWEL, ? B.36, B.37 SYST.PASS:STAT B.86
[SOUR:]LIST:-DWEL:POIN? B.38 SYST:REM, ? B.87, B.88
[SOUR:]LIST:GEN, ? B.39, B.40 SYST.SEC B.89
[SOUR:]LIST:QUER, ? B.41, B.42 SYST:SET, ? B.90, B.91
[SOUR:LIST:SEQ, ? B.43,B.44 SYST:VERS? B.92
[SOUR:]LIST:VOLT, ? B.45, B.46
NOTE: Commands listed above that are followed by “, ?“ have a related query.

BIT 4886 120419 B-1

B.2

B.3

NUMERICAL VALUES

The SCPI data parser on the BIT 4886 supports a maximum of 8 digits after the decimal point and a maximum
integer of 4 x 108, Any values greater than these are not processed by the device and no error is generated.
The largest string that can be received or transmitted by the BIT 4886 is 253 characters.

All numerical data is returned in scientific notation, digits with decimal point and Exponent, e.g., 2.71E1 for 27.1
after calibration constants have been applied. Thus. for example, VOLT 14;VOLT? may return 1.39997E1
which indicates that the unit has been calibrated to provide 13.9997V for a programmed value of 14V, within
the calculation accuracy of the BIT 4886. Error “-120” results from syntactical errors, e.g., the exponent
exceeds 8, a letter is identified, etc. Error “-222” is produced if the value exceeds the range of acceptable val-
ues for the parameter.

CALibrate:CPRotect COMMAND CAL:CPR

Syntax: Short Form: CAL:CPR {MIN | MAX}

Long Form: CALibrate:CPRotect {MIN | MAX}

Description: Selects Current Protection limit calibration, only effective with power supply in Calibrate sta-

B.4

tus. CAL:CPR MAX selects maximum positive current protection limit calibration. CAL:CPR MIN
selects maximum negative current protection limit calibration. Related Commands: CAL:STAT,
CAL:ZERO, CAL:DATA, CAL:SAVE.

CALibrate: STATus COMMAND CAL:STAT

Syntax: Short Form: CAL:STAT <boolean>

Long Form: CALibrate:STATus <boolean>
where boolean = 0 or OFF, 1 or ON

Description: Sets the power supply to Calibrate status. <boolean> 1 or ON causes power supply to enter Cali-

B.5

brate status. <boolean> 0 or OFF causes power supply to exit Calibrate status. If the wrong password
was not enabled, error message -224 is posted to the queue. Related Commands: CAL:STAT,
CAL:VOLT, CAL:CURR, CAL:ZERO, CAL:DATA, CAL:DPOT, CAL:SAVE. (See example, Figure B-1.)

CALibrate[: STATus]? QUERY CAL[:STAT]?

Syntax: Short Form: CAL:STAT? Long Form: CALibrate:STATus?

Return Value: <DATA>
where DATA = ZERO-ZERO, VOLT-ZERO, VOLT-MAX, VOLT-MIN, CURR-ZERO, CURR-MAX,
CURR-MIN, or OFF.

Description: Identifies whether the power supply is in Calibrate status and indicates which calibration step

B-2

is active. OFF indicates power supply is not in Calibrate status. ZERO-ZERO indicates power supply
is at 0V, OA, waiting for connection of load resistor. VOLT-ZERO indicates zero offset voltage adjust-
ment is active. VOLT-MAX indicates maximum voltage adjustment is active. VOLT-MIN indicates mini-
mum (negative) voltage adjustment is active. CURR-ZERO indicates zero offset current adjustment is
active. CURR-MAX indicates maximum current adjustment is active. CURR-MIN indicates minimum
(negative) current adjustment is active. Related Commands: CAL:STAT, CAL:VOLT, CAL:CURR,
CAL:ZERO, CAL:DATA, CAL:DPOT, CAL:SAVE. (See example, Figure B-1.)

BIT 4886 120419

SYST.:PASS:CEN 1234

If password set to 1234, enables commands requiring password.

CAL:STAT 1 Power supply enters Calibrate status.

CAL:STAT? Returns ZERO-ZERO indicating power supply in Calibrate status|
CAL:VOLT ZERO Voltage Zero Calibration selected.

CAL:VOLT MAX Voltage positive Calibration selected.

CAL:DPOT 1 Output voltage increased by 10 LSB.

CAL:VOLT MIN Voltage negative Calibration selected.

CAL:DATA -2 Output voltage decreased by 2 LSBs.

CAL:ZERO Output voltage and current set to zero.

CAL:CURR ZERO

* User connects shunt and connects DVM to output.
Current Zero Calibration selected.

B.6 CALibrate:CURRent COMMAND

Syntax:

Description:

B.7 CALibrate:DATA COMMAND

Syntax:
Description:

B.8 CALibrate:DPOT COMMAND

Syntax:
Description:

BIT 4886 120419

CAL:DPOT -1 Output current decreased by 10 LSB.
CAL:CURR MIN Current negative Calibration selected.
CAL:DPOT 1 Output current increased by 10 LSB.
CAL:CURR MAX Current positive Calibration selected.
CAL:DATA -1 Output current decreased by 1 LSB.
CAL:SAVE Calibration values saved.
CAL:STAT 0 Power supply exits Calibrate mode.
CAL:STAT? Returns 0 indicating power supply not in Calibrate status
* User disconnects shunt and DVM.
FIGURE B-1. USING CALIBRATION COMMANDS AND QUERIES

CAL:CURR

Short Form: CAL:CURR {MIN | MAX | ZERO}

Long Form: CALibrate:CURR {MIN | MAX | ZERO}

Selects Current calibration, only effective with power supply in Calibrate status.

CAL:CURR ZERO selects Current Zero Calibration. CAL:CURR MIN selects Current Full Scale Nega-
tive Calibration. CAL:CURR MAX selects Current Full Scale Positive Calibration. Normally Current
Zero is done first, then Current Full Scale Positive Calibration. Related Commands: CAL:STAT,
CAL:VOLT, CAL:CURR, CAL:ZERO, CAL:DATA, CAL:DPOT, CAL:SAVE. (See example, Figure B-1.)

CAL:DATA

Short Form: CAL:DATA {N} Long Form: CALibrate:DATA {N}

Provides fine adjustment of output during calibration only; Increases or decreases output by N
LSB’s. CAL:CURR -N decreases output by N LSBs. CAL:CURR N increases output by N LSBs. This
command is used during calibration to adjust the output for zero calibration as well as full scale cali-
bration. This command is only effective if Calibration status is active. Related Commands: CAL:STAT,
CAL:VOLT, CAL:LVOLT, CAL.LCURR, CAL:CURR, CAL:DPOT, CAL:ZERO, CAL:SAVE. (See exam-

ple, Figure B-1.)
CAL:DPOT

Short Form: CAL:DPOT {N} Long Form: CALibrate:DPOT {N}

Provides coarse adjustment of the output during calibration to within 5% of maximum and 2%
of nominal; increases or decreases output by 50 LSB increments. Acceptable values of N are
within 32, corresponding to +1600 (50 x 32) LSB’s. CAL:DPOT -N decreases output voltage by N
LSBs. CAL:VOLT N increases output voltage by N LSBs. This command is used during calibration to
adjust the output for Zero calibration as well as Full Scale Positive calibration. Output voltage is moni-
tored on a calibrated digital multimeter and increased or decreased as required using this command.
Output current is monitored on a calibrated digital multimeter (reading voltage at the sense terminals
of the shunt resistor) and increased or decreased as required using this command. This command is
only effective if Calibration status and either Voltage Zero, Voltage Maximum. Current Zero or Current
Maximum calibration are active. CAL:STAT, CAL:VOLT, CAL:LVOL, CAL:VOLT, CAL:CURR,
CAL:DATA, CAL:ZERO, CAL:SAVE. (See example, Figure B-1.)

B-3

B.9 CALibrate:LCURR COMMAND CAL:LCURR

Syntax:

Description:

Short Form: CAL:LCURR {MIN | MAX | ZERO}

Long Form: CALibrate:LCURR {MIN | MAX | ZERO}

Selects low current range (1/4 scale) Current calibration, only effective with power supply in
Calibrate status. CAL:LCURR ZERO selects Low Current Range Zero Calibration. CAL:LCURR MIN
selects Low Current Range Full Scale Negative Calibration. CAL:LCURR MAX selects Low Current
Range Full Scale Positive Calibration. Normally Low Current Range Zero is done first, then Low Cur-
rent Range Full Scale Positive Calibration. Related Commands: CAL:STAT, CAL:VOLT, CAL:CURR,
CAL:ZERO, CAL:DATA, CAL:DPOT, CAL:SAVE. (See example, Figure B-1.)

B.10 CALibrate:LVOLT COMMAND CAL:LVOLT

Syntax:

Description:

Short Form: CAL:LVOLT {MIN | MAX | ZERO}

Long Form: CALibrate:LVOLT {MIN | MAX | ZERO}

Selects low voltage range (1/4 scale) Voltage calibration, only effective with power supply in
Calibrate status. CAL:LVOLT ZERO selects Low Voltage Range Zero Calibration. CAL:LVOLT MIN
selects Low Voltage Range Full Scale Negative Calibration. CAL:LVOLT MAX selects Low Voltage
Range Full Scale Positive Calibration. Normally Low Voltage Range Zero is done first, then Low Volt-
age Range Full Scale Positive Calibration. Related Commands: CAL:STAT, CAL:VOLT, CAL:CURR,
CAL:ZERO, CAL:DATA, CAL:DPOT, CAL:SAVE. (See example, Figure B-1.)

B.11 CALibrate:SAVE COMMAND CAL:SAVE

Syntax:

Description:

Short Form: CAL:SAVE Long Form: CALibrate:SAVE

Short Form: CAL:SAVE DATE <string> Long Form: CALibrate:SAVE DATE <string>

where DATE is optional allowing <string> of up to 12 contiguous characters identifying calibration date
to be saved. Active DATE <string > is returned by *IDN? query.

Saves computed calibration values in non-volatile memory. This command saves only the calibra-
tion values computed after entering Calibration status. If, for example, only Voltage calibration was
performed, these are the only values saved. These values are stored in Flash Memory (see PAR.
4.7.4). Previous values are not lost, and can be restored (see PAR. 4.7.4.1). This command should be
the last command before exiting Calibrate status. CAL:STAT, CAL:DATA, CAL:DPOT, CAL:VOLT,
CAL:CURR, CAL:ZERO. (See example, Figure B-1.)

B.12 CALibrate:VOLTage COMMAND CAL:VOLT

Syntax:

Description:

Short Form: CAL:VOLT {MIN | MAX | ZERO}

Long Form: CALibrate:VOLT {MIN | MAX | ZERO}

Selects Voltage calibration, only effective with power supply in Calibrate status.

CAL:VOLT ZERO selects Voltage Zero Calibration. CAL:VOLT MIN selects Voltage Full Scale Nega-
tive Calibration. CAL:VOLT MAX selects Voltage Full Scale Positive Calibration. Normally Voltage
Zero is done first, then Voltage Full Scale Positive Calibration. Related Commands: CAL:STAT,
CAL:VOLT, CAL:CURR, CAL:ZERO, CAL:DATA, CAL:DPOT, CAL:SAVE. (See example, Figure B-1.)

B.13 CALibrate:VPRotect COMMAND CAL:VPR

Syntax:

Description:

Short Form: CAL:VPR {MIN | MAX}
Long Form: CALibrate:VPRotect {MIN | MAX}

Selects Voltage Protection limit calibration, only effective with power supply in Calibrate sta-
tus. CAL:VPR MAX selects maximum positive voltage protection limit calibration. CAL:VPR MIN
selects maximum negative voltage protection limit calibration. Related Commands: CAL:STAT,
CAL:ZERO, CAL:DATA, CAL:SAVE.

B.14 CALibrate:ZERO COMMAND CAL:ZERO

Syntax:
Description:

B-4

Short Form: CAL:ZERO Long Form: CALibrate:ZERO

Sets output to zero while calibration equipment connections are changed. This command is
used when changing from Voltage to Current calibration or vice-versa. CAL:ZERO sets output voltage
and current to zero. The user then connects or disconnects the shunt resistor or the digital voltmeter
from the output terminals of the power supply as required for the subsequent Voltage or Current cali-
bration. The next command should select the new parameter to be calibrated. Related Commands:
CAL:STAT, CAL:VOLT, CAL:CURR, CAL:SAVE. (See example, Figure B-1.)

BIT 4886 120419

B.15 INITiate[:IMMediate] COMMAND INIT[:IMM]

Syntax: Short Form: INIT:[IMM] Long Form: INITiate[:IMMediate]

Description: Enables a single trigger. This command enables a single trigger. A *TRG command completes the
sequence. Upon receipt of the *TRG command, the power supply will return to the commanded values
of voltage and current established by the VOLT:TRIG and CURR:TRIG commands. After a *TRG com-
mand has been received, subsequent *TRG commands have no effect unless preceded by INIT or
INIT:CONT ON. Related Commands: *TRG, TRIG. (See example, Figure B-4.)

B.16 INITiate:CONTinuous COMMAND INIT:CONT

Syntax: Short Form: INIT:CONT {ON | OFF} or {1 | 0} (1 = on, 0 = off)

Long Form: INITiate:CONTinuous {ON | OFF} or {1 | 0} (1 = on, 0 = off)

Description: INIT:CONT ON enables continuous triggers.; INIT.CONT OFF disables continuous triggers. If
INIT:CONT is OFF, then INIT[:IMM] arms the trigger system for a single trigger. If INIT.CONT is ON,
then the trigger system is continuously armed and INIT[:IMM] is redundant. Executing *RST command
sets INIT:CONT to ON. (See example, Figure B-4.)

B.17 INITiate:CONTinuous QUERY INIT:CONT?

Syntax: Short Form: INIT:CONT? Long Form: INITiate:CONTinuous?
Return Value: 1 or O

Description: Determines whether continuous triggers are enabled or disabled. Power supply returns value of
INIT:CONT flag: “1” = continuous triggers are enabled (INIT:CONT ON); “0” = continuous triggers dis-
abled (INIT:CONT OFF). (See example, Figure B-4.)

B.18 MEASure[:SCALar]:CURRent[:DC]? QUERY MEAS:CURR?

Syntax: Short Form: MEAS[:SCAL]:CURR[:DC]?
Long Form: MEASure[:SCALar]:CURRent[:DC]?
Return Value: <num_value> (digits with decimal point and Exponent)

Description: Measures actual current. This query returns the actual value of output current (measured at the out-
put terminals) as determined by the programmed value of voltage and current and load conditions.
(See example, Figure B-4.)

B.19 MEASure[:VOLTage][:SCALar][:DC]? QUERY MEAS:VOLT?

Syntax: Short Form: MEAS[:SCAL]:VOLT[:DC]?
Long Form: MEASure[][:SCALar]:VOLTage[:DC]?
Return Value: <num_value> (digits with decimal point and Exponent)

Description: Measures actual voltage. This query returns the actual value of output voltage (measured at the out-
put terminals) as determined by the programmed value of voltage and current and load conditions.
(See example, Figure B-4.)

B.20 OUTPut[:STATe] COMMAND OUTP

Syntax: Short Form: OUTP[:STAT] <boolean> Long Form: OUTPut[:STATe] <boolean>
<boolean>=(0 or OFF, 1 or ON)

Description: Enables or disables the power supply output. Upon power up the power supply is in Local mode:
the output is always on and the front panel controls affect the unit's operation. Upon entering Remote
mode, the default state is OUTP OFF; OUTP ON must be executed to enable the output. When OUTP
OFF is executed, the programmed values of voltage and current are saved, then voltage and current
are programmed to 0. When OUTP ON is executed, the power supply output is restored to the previ-
ously saved programmed values. The saved values of voltage and current can be viewed by VOLT?
and CURR? queries. Related Commands: OUTP?.

B.21 OUTPut[:STATe] QUERY OouTP?

Syntax: Short Form: OUTP[:STAT]? Long Form: OUTPut[:STATe]?
Return Value: <int_value> (0 or 1)

Description: Indicates whether power supply output is enabled or disabled. Returns O if output disabled,
returns 1 if output enabled. Related Commands: OUTP.

BIT 4886 120419 B-5

B.22 [SOURce:]FUNCtion:MODE COMMAND FUNC:MODE
Syntax: Short Form: FUNC:MODE {VOLT | CURR} Long Form: [SOURce:]JFUNCtion:MODE {VOLT | CURR}

Description: Establishes the operating mode of the power supply. VOLT = Voltage mode. CURR = Current
mode. FUNC:MODE VOLT commands power supply to Voltage mode, FUNC:MODE CURR com-
mands power supply to Current mode. Commanded mode establishes parameters (voltage or current)
monitored for error conditions. Actual mode depends upon load conditions. When commanded to Volt-
age mode, if load conditions cause the power supply to try to exceed the current limit, the unit will flag
an error condition. When commanded to Current mode, if load conditions cause the power supply to
try to exceed the voltage limit, the unit will flag an error condition. If VOLT:MODE or CURR:MODE is
set to TRANS, FUNC:MODE command automatically changes the mode to FIXed. (See example, Fig-

ure B-4.)
B.23 [SOURce:]JFUNCtion:MODE? QUERY FUNC:MODE?
Syntax: Short Form: FUNC:MODE? Long Form: [SOURce:]JFUNCtion:MODE?

Return value: 0 (voltage mode) or 1 (current mode)
Description: Returns the operating mode of the power supply. 0 = Voltage mode. 1 = Current mode.

B.24 [SOURce:]JFUNCtion:MODE:TRIGger FUNC:MODE:TRIG

Syntax: Short Form: FUNC:MODE:TRIG {VOLT | CURR}

Long Form: [SOURce:]JFUNCtion:MODE:TRIGger {VOLT | CURR}

Description: Establishes the operating mode of the power supply when a TRIGger command is sent. VOLT =
Voltage mode. CURR = Current mode. This command establishes the operating mode for triggers
which is to be saved or recalled using *SAV or *RCL command. FUNC:MODE:TRIG VOLT commands
power supply to Voltage mode when a TRIGger command is sent, FUNC:MODE:TRIG CURR com-
mands power supply to Current mode when a TRIGger command is sent. If VOLT:MODE or
CURR:MODE is set to TRANS, FUNC:MODE:TRIG command automatically changes the mode to
FIXed. (See example, Figure B-5.)

B.25 [SOURce:]JFUNCtion:MODE:TRIGger? QUERY FUNC:MODE: TRIG?

Syntax: Short Form: FUNC:MODE:TRIG? Long Form: [SOURce:]JFUNCtion:MODE:TRIGger?
Return value: 0 = voltage mode or 1 = current mode

Description: Returns the operating mode which the power supply will enter when a trigger command is
sent. VOLT = Voltage mode. CURR = Current mode. (See example, Figure B-5.)

B.26 [SOURce:]LIST:CLEar COMMAND LIST:CLE
Syntax: Short Form: LIST:CLE Long Form: LIST:CLEar>

Description: Clears all list entries by setting all pointers to 0. Also sets LIST:DIR to UP, LIST:GEN to DSEQ and
LIST:COUNT to 1. Related Commands: All LIST commands (See example, Figures B-2 and B-3.)
B.27 [SOURce:]LIST: COUNt COMMAND LIST:COUN
Syntax: Short Form: LIST:COUNK<int_value 0 to 255> Long Form: LIST:COUNTt> <int_value 0 to 255>

Description: Establishes how many times the list is executed. Allows user to establish how many times the list
(established by LIST:GEN DSEQ or LIST:GEN SEQ and LIST:SEQ) is executed. The order (from
beginning to end or from end to beginning) is determined by LIST:DIR. For LIST:COUN 0, the unit will
execute the sequence indefinitely until either a VOLT:MODE FIXED, or PROG:STOP command is
received. Commands: LIST:GEN, LIST:SEQ, LIST:DIR. (See example, Figures B-2 and B-3.)

B.28 [SOURce:]LIST: COUNt? QUERY LIST:COUN?

Syntax: Short Form: LIST.COUNT? Long Form: LIST:COUNt?
Return Value: <int_value>

Description: Identifies how many times the list will be executed. Returns value set by LIST:.COUN command.
(See example, Figure B-3.)

B-6 BIT 4886 120419

B.29 [SOURce:]LIST:COUNt:SKIP COMMAND LIST:COUN:SKIP

Syntax:

Description:

Short Form: LIST:COUN:SKIP nn Long Form: LIST:COUNt:SKIP nn
nn = <int_value 0 to 255>
Allows beginning steps of list-generated waveform to be run once, then ignored.

When a list is to be repeated using LIST:COUNT, this command allows the user to skip the first nn
steps once the full set has been executed. After the first iteration (which executes all steps), the first
nn steps are skipped. The LIST:COUN:SKIP command allows the user to precondition a list-generated
waveform by setting unique conditions at the beginning that are not repeated for the rest of the repeti-
tions. LIST:CLEar sets nn to 0. Only works in LIST:DIR UP mode; if LIST:DIR DOWN is issued, this
command has no effect. Related Commands: LIST:COUN, LIST:COUN:SKIP?, LIST:SEQ, LIST:DIR,
LIST:CLE. (See example, Figures B-2 and B-3.)

B.30 [SOURce:]LIST:COUNt:SKIP? QUERY LIST:COUN:SKIP?

Syntax:

Description:

Short Form: LIST:COUN:SKIP? Long Form: LIST:COUNt:SKIP?
Return Value: <int_value>

Identifies how many steps will be skipped the first time the list is executed. Returns value set by
LIST:COUN:SKIP command. (See examples, Figure B-3.)

B.31 [SOURce:]LIST:CURRent COMMAND LIST:CURR

Syntax:

Description:

Short Form: LIST:CURR <exp_value>, <exp_value>, . . . (to max of 1002 data points)

Long Form: LIST:CURRent <exp_value>, <exp_value>, . . . (to max of 1002 data points)
<exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1

Adds the current value (in Amps) to list. This command sequentially adds LIST:CURRent values to
the main channel List Data Table locations illustrated in Table B-2. Starting location is indicated by
LIST:CURR:POIN? These locations correspond to the default sequence (LIST:GEN DESQ). The max-
imum number of entries is 1002. Since the input buffer of the BIT 4886 has a limit of 253 characters,
multiple commands are necessary to complete the full 1002 entries of the list. If LIST:VOLT has any
entries, an error message: -221,"Settings conflict” is posted in the error queue. Related Commands:
LIST:CURR:POIN?. (See example, Figure B-3.)

TABLE B-2. LIST DATA TABLE

Location (DSEQ) 012 |3|4|5|6|7|8|9|10/11|12|13|14|15|16(17| 1001

Main Channel (commanded mode)
LIST.CURRentor LIST:VOLTage | | | [| | | | | | | | | | | | | | |~

LISTDWELI | | | e

NOTE: FUNC:MODE determines whether main channel is for voltage or current. FUNC:MODE CURR must precede LIST:CURR commands,
FUNC:MODE VOLT must precede LIST:VOLT commands

B.32 [SOURce:]LIST:CURRent? QUERY LIST:CURR?
Syntax: Short Form: LIST:.CURR? Long Form: LIST:CURRent?
Return Value: <valuel>, <value2>, ... to <valuel6>
Description: Identifies the parameters (main channel) entered for the list. Starting at location established by
LIST:QUERYy, returns comma-separated list of up to 16 values indicating the main channel parameters
entered, i.e., the contents of main channel locations of Table B-2. Related Commands: LIST: CURR,
LIST:QUERYy. If LIST:VOLT has any entries, an error message: -221,"Settings conflict” is posted in the
error queue. (See example, Figure B-3.)
B.33 [SOURCce:]LIST:CURRent:POINts? QUERY LIST:CURR:POIN?
Syntax: Short Form: LIST:CURR:POIN? Long Form: LIST: CURRent:POINts?
Return Value: <value> (0 to 1001)
Description: Identifies the total number of points in a list and the next location to be filled by LIST:CURR

BIT 4886 120419

command. The LIST:CURR pointer is initially at 0 via LIST:CLE. For each data point entered by a
LIST:CURR command the list pointer is incremented. If LIST.CURR:POIN? returns 5, the LIST:CURR
pointer is at 5, indicating there are 6 data points comprising the list. If LIST:VOLT has any entries, an
error message: -221,"Settings conflict” is posted in the error queue. Related Commands: LIST:CURR.
(See example, Figure B-3.)

B-7

B.34 [SOURce:]LIST:DIRection COMMAND LIST:DIR

Syntax: Short Form: LIST:DIR (UP|DOWN) Long Form: LIST:DIRection (UP|DOWN)

Description: Allows the list to be executed from beginning to end (UP) or from end to the beginning
(DOWN). *RST or LIST:CLEar sets the list to the UP direction (beginning to end). Works with both
LIST.GEN DSEQ and LIST.GEN SEQ commands. Related Commands: LIST:GEN. LIST:SEQ,
LIST:-DWEL?. (See example, Figures B-2 and B-3.)

B.35 [SOURce:]LIST:DIRection? QUERY LIST:DIR?

Syntax: Short Form: LIST:DIR? Long Form: LIST:DIRection?
Return Value: <value> (UP or DOWN)

Description: Identifies the direction (up or down) for executing the list established by LIST:DIR. Related
Commands: LIST: DIR. (See example, Figure B-3.)

B.36 [SOURce:]LIST-DWELI COMMAND LIST:DWEL

Syntax: Short Form: LIST:DWEL <value> (0.0005 to 10),<value>,<value>, . . . to maximum of 1002 values
Long Form: LIST:DWELI <value> (0.0005 to 10),<value>,<value>, . . . to maximum of 1002 values

Description: Determines how long the main channel parameters will be active. Sets time value (from 0.0005 to
10) in seconds for List:Dwell locations illustrated in Table B-2. These locations are associated with the
corresponding main channel locations illustrated in Table B-2. The main channel is determined by
FUNC:MODE, either current (FUNC:MODE CURR) or voltage (FUNC:MODE VOLT) If LIST:DWEL is
entered for only location 0, that time duration will apply to all steps when either VOLT:MODE LIST or
CURR:MODE LIST is executed. Related Commands: VOLT:MODE, FUNC:MODE, LIST:CURR,
LIST:VOLT, LIST:-DWEL?, LIST:SEQ. (See example, Figures B-2 and B-3.)

B.37 [SOURce:]LIST:DWELI? QUERY LIST:DWEL?

Syntax: Short Form: LIST:DWEL? Long Form: LIST:DWELI?
Return Value: <value>

Description: Identifies the dwell times entered for the list. Starting at location established by LIST:QUERYy,
returns comma-separated list of up to 16 values indicating the dwell time parameters entered. i.e., the
contents of LIST:-DWEL locations of Table B-2. Related Commands: LIST: DWEL, LIST:QUERY. (See
example, Figure B-3.)

B.38 [SOURce:]LIST:DWELI:POINts? QUERY LIST:DWEL:POIN?

Syntax: Short Form: LIST:DWEL:POIN? Long Form: LIST:DWELI:POINts?
Return Value: <value> (0 to 1001)

Description:ldentifies the number of locations for which time values have been entered and the next loca-
tion to be filled by a LIST:-DWEL command. If LIST:DWEL:POIN? returns 6, dwell times have been
entered for locations 0 through 5 and location 6 is the next to be filled by a LIST:DWEL command.
LIST:DWEL, LIST:-DWEL:POIN. (See example, Figure B-3.)

B-8 BIT 4886 120419

SIMPLE STAIRCASE SAWTOOTH WAVEFORM EXAMPLE

*RST Resets power supply to the default state.

CURR 1 Sets programmed current to 1A.

LIST:CLE Clears all list entries by setting all pointers to 0.

LIST:VOLT -5,-4,-3,-2, -1,0,1,2,3,4,5 Create 10 steps that increases from -5V to +5V.

LIST:-DWEL 2 Set the dwell time for each step to 2 seconds.

LIST:COUN 10 Determines that the list will be repeated 10 times when executed.
OUTP ON Turns the BOP output on.

VOLT:MODE LIST Initiates execution of the list.

Upon sending VOLT:MODE LIST, the unit outputs a sawtooth waveform that increases from -5V to +5V and
repeats 10 times. Each step is 1V with a dwell time of 2 seconds. There is an abrupt change from +5V to -5V
each time the list transitions from the last step to the first step of the waveform. After the waveform repeats
10 times, the list stops running and the unit output will be +5V (the last step in the list). The total list running
time is equal to:

10 (from LIST COUN) x 11 (total number of list steps) x 2 seconds (dwell time of each step) = 220 seconds

To invert the waveform, when the list stops running, add the following command between OUTP ON and
VOLT:MODE LIST above.

LIST:DIR DOWN List direction is from the end to the beginning of the list.

Upon sending VOLT:MODE LIST, the unit outputs an inverted sawtooth waveform that is similar to the non
inverted waveform, except it decreases from +5V to -5V and abruptly returns to +5V. After the waveform
repeats 10 times, the list stops running and the unit output will be -5V (the first step in the list, and the last

step executed). The total list running time is the same as before the direction was reversed.

SIMPLE STAIRCASE TRIANGLE WAVEFORM EXAMPLE

*RST Resets power supply to the default state

CURR 1 Sets programmed current to 1A

LIST:CLE Clears all list entries by setting all pointers to 0.

LIST:VOLT 0,1,2,3,4,5,6,7,8,9,10 Create 11 steps that increase from 0V to +10V.

LIST:VOLT 9,8,7,6,5,4,3,2,1,0 Create 10 steps that decrease from +9V to OV. The 21-step list

forms a triangle stair waveform that first increases from 0V to +10V
and then decreases to 0OV.

LIST:-DWEL 2 Sets the dwell time for each step to 2 seconds.

LIST:COUN 10 Determines that the list will be repeated 10 times when executed.
OUTP ON Turns the BOP output on

VOLT:MODE LIST Initiates execution of the list.

The unit outputs a triangle stair waveform, that increases from 0V to +10V and then decrease to OV. The
waveform repeats 10 times. Each step is 1V with a dwell time of 2 seconds. The waveform stays at OV for 4
seconds because for each repetition, the last step of the decreasing list and the first step of the increasing
list are both 2 seconds at OV. When the list stops running, the output will be OV (the last step of the list). The
total list running time is equal to:

10 (from LIST COUN) x 21 (total number of list steps) x 2 seconds (dwell time of each step) = 420 seconds

To eliminate the first step and make the waveform times even, when the list stops running, add the following
command between OUTP ON and VOLT:MODE LIST above.

LIST:COUN:SKIP 1 Skip first step (0V level) after the first iteration

Upon sending VOLT:MODE LIST, the unit outputs a triangle stair waveform, that is identical to the original,
except that the first step (0V) is only executed for the first iteration. After 10 repetitions the list stops running
and the output is OV. The total list running time is equal to:

10 (from LIST COUN) x 20 (total number of repeated list steps) x 2 seconds (dwell time of each step) = 400
seconds + 2 seconds (dwell time of first step, run only once) = 402 seconds.

FIGURE B-2. USING LIST COMMANDS FOR SAWTOOTH AND TRIANGLE WAVEFORMS

BIT 4886 120419

B-9

NOTES: Examples below are intended only to illustrate command functions. Refer to PAR. 4.1.2 for pro-
gramming techniques to optimize performance.

FUNC:MODE VOLT
LIST:CLEAR

LIST:-DWELL .010

Initializes the power supply mode to be voltage.

Initializes the list processor to add entries, clears main channel (LIST:CURR
or LIST:VOLT) and LIST:DWEL data tables (Table B-2) and List Sequence
table (Table B-3).

Sets the time duration for location 0 to be 0.010 second (Since dwell times
for the rest of the locations in this sample list are not entered before running
the list, the dwell time will be 0.010 second for all locations.

LIST:VOLT -20,-18,-16,-14,-12,-10,-8,-6,-4,-2,0

LIST:VOLT:POIN?

Starting at location 0 (-20), up to location 10 (0), fills the list with 11 data
points.

Returns 11. Indicates that 11 data points have been entered, and location
11 is the next location to be filled (for the 12th data point.

NOTE: See PAR. B.2 for format and accuracy of all numerical data returned.

LIST.QUERY?
LIST:VOLT?

Returns 0 (pointer cleared by LIST:CLE).
Returns -20,-18,-16,-14,-12,-10,-8,-6,-4,-2,0 (the contents of locations 0
through 10). (See PAR. B.2 for format and accuracy of numerical data.)

LIST:VOLT 2,4,6,8,10,12,14,16,18,20

LIST:VOLT:POIN?
LIST:VOLT?

LIST:GEN SEQUENCE

Adds 10 points to the list (location 11 through 20). List now has 21 points.
Returns 21 (the next location to be filled by LIST:VOLT).

Returns -20,-18,-16,-14,-12,-10,-8,-6,-4,-2,0,2,4,6,8 (the contents of loca-
tions 0 through 15).

Enables the execution of a user-determined sequence list

LIST:SEQ 0, 0, 0, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

Establishes the user-determined sequence.

LIST:SEQ 19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

LIST:SEQ?

LIST:QUERY 16
LIST:SEQ?

LIST:QUERY 32
LIST:SEQ?
LIST:COUNT 100

LIST:COUN:SKIP 4

CURR 1;VOLT -20
OUTPUT ON
VOLT:MODE LIST

VOLT?
LIST:GEN?

Continues the user-determined list sequence. The SEQ values entered
mean that if LIST:GEN SEQ is issued, the list will execute location O four
times (-20V for 40 milliseconds) location 1 through 20 and 19 through 0 (10
milliseconds each) for a total of 44 data points when VOLT:MODE LIST is
issued.

Returns 0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12 (LIST:SEQ locations O through
15).

Start LIST queries from location 16.

Returns 13,14,15,16,17,18,19,20,19,18,17,16,15,14,13,12 (LIST:SEQ loca-
tions 16 through 31).

Start LIST queries from location 32.

Returns 11,10,9,8,7,6,5,4,3,2,1,0 (LIST:SEQ locations 32 through 43).
Specifies that when VOLT:MODE LIST is issued, the user-determined
sequence will be executed 100 times. (44 steps in the list will be executed
100 times)

Specifies that the first 4 steps of the sequence will only be executed the first
time through the list. For the subsequent 99 iterations established by
LIST:COUNT 100, location 0 (-20V) will last 10 milliseconds.

initializes the BOP output.

Turns the output on (BOP now provides -20 volts)

Executes the list. For 40 milliseconds the BOP outputs -20V, then output a
staircase triangle wave from -20V to +20V and back down to -20V. This
staircase will have a uniform spacing between voltage changes of 10 milli-
seconds and will repeat 100 times.

Returns -20 (the last step in the list set the unit to -20V.

Returns SEQ to indicate the list will be executed in the user-determined
order entered by LIST:SEQ (Table B-3).

FIGURE B-3. USING LIST COMMANDS AND QUERIES (SHEET 1 OF 2)

BIT 4886 120419

LIST:GEN DSEQ
LIST:COUN:SKIP?
LIST:COUN:SKIP O
LIST:COUNT?
LIST:COUNT 10
LIST.COUNT?
VOLT:MODE LIST

VOLT?
LIST:VOLT:POIN?
LIST:VOLT 10,0,-10
LIST:COUN?
LIST:DIR?
LIST:DIR DOWN
VOLT:MODE LIST

LIST:GEN?
LIST:GENERATION:SEQ
VOLT:MODE:LIST

LIST:QUERY O
LIST:-DWEL:POIN?

Changes the list to execute sequentially from locations 0 through 20).
Returns 4. Skip first 4 steps after the first time through count.

Specifies no steps to be skipped after the first time through the count.
Returns 100.

Determines that the list will be repeated 10 times when executed.

Returns 10.

Initiates execution of the list. The unit outputs a sawtooth waveform that
increases from -20V to +20V and repeats 10 times. There is an abrupt
change from +20V to -20V each time the list transitions from location 20 to
location 0.

Returns 20, (the last step in the list set the unit to 20V.

Returns 21 (the next location to be filled by LIST:VOLT).

Add 3 points to the list (location 21 through 23).

Returns 10 indicating that the list will be repeated 10 times when executed.
Returns UP (the default.)

Reverses the sequence order.

The list (24 steps) is executed. The output starts at -10V, goes to 0V, to 10V
to 20V then decreases to -20V in 2V steps and repeats 10 times. The saw-
tooth is similar to the previous sawtooth, except the waveform is inverted
and the abrupt change from -20 to +20 is executed in three steps of 10
volts.

Returns DSEQ (default sequence))

Changes sequence to user determined sequence.

The original list of 4400 points will be executed (without the three new
steps.)

Sets query pointer to zero.

Returns 1 indicating the next dwell time will be entered in location 1.

LIST:-DWELL .01,.01,.01,.01,.01,.01,.01,.01,.01

LIST:-DWELL 1
VOLT:MODE LIST

LIST:-DWELL:POINTS?
LIST:VOLT:POINTS?

Enters dwell time of 0.01 seconds in locations 1 through 9.

Enters dwell time of 1 second in location 10.

the list is not executed, the unit returns error -221,Settings Error indicating
the lists are not balanced.

Returns 11 to indicate the dwell list has 11 entries

Returns 24 to indicate the voltage list has 24 entries.

LIST:-DWELL .01,.01,.01,.01,.01,.01,.01,.01,.01,.01,.1,.1,.1

DWELL:POINTS?
LIST:QUER?
LIST:QUER 18
LIST:-DWEL?
LIST:VOLT?

LIST COUNT O
VOLT:MODE LIST

LIST:GEN?

VOLT:MODE FIX
VOLT?

VOLT: -4

VOLT:MODE TRAN .05
VOLT:RANG 4

VOLT: 3

Dwell times are entered in locations 11 through 23.

Returns 24 indicating there are now 24 step dwell times on the list.

Returns 0 indicating list queries will start from location O

Causes list queries to start at location 18

Returns .01,.01,.01,.1,.1,.1 (the dwell times for locations 18 through 23.
Returns 16,18,20,10,0,-10

List will repeat indefinitely.

The list is executed. Staircase wave now consists of 24 steps of .01 sec-
onds except for the OV step (location 10) which outputs OV for 1 second.
The end of the staircase has three steps of 0.1 second.

Returns error -221,Settings Error because a LIST command cannot be
executed while the LIST is still being executed.

Stops execution of the list

VOLT?Returns -20 (the last step in the list set the unit to -20V.

Programs output to -4V

Prepares for a voltage transient lasting 0.05 seconds.

Sets unit to 1/4 scale (e.g., for BOB 20-20M, maximum voltage now 5V.
Output goes to +3V for 0.05 second, then returns to -4V.

FIGURE B-3.

BIT 4886 120419

USING LIST COMMANDS AND QUERIES (SHEET 2 OF 2)

B-11

B.39 [SOURce:]LIST:GENeration COMMAND LIST:GEN
Syntax: Short Form: LIST:GEN (SEQ | DSEQ)
Long Form: LIST:GENeration (SEQuence | DSEQuence)
Description: Establishes the order for executing the list. Selects either default sequence (DSEQ) or a user-
determined sequence (SEQ).
DSEQ is the default sequence shown in Table B-2 and Table B-3, 0 through 1001 When
LIST:GEN DSEQ is issued, the data points are executed in order either from beginning (location 0) to
end (the last location with data, up to location 1001), or from end to beginning (location 0). The order is
established by LIST:DIR command.
SEQ allows the list to be executed by an arbitrary sequence (up to 512 steps) determined by
LIST:SEQ and LIST:DIR. Related Commands: LIST:SEQ, LIST:DIR. (See example, Figure B-3.)

TABLE B-3. LIST SEQUENCE TABLE

LOCATION |0 |1 |2 |3 |4|5|6|7|8|9|10/11|12|13|14|15|16|17...... 511 | 512 1001
DSEQ 0|1|2|3|4|5|6|7|8|9|10/11|12|13 /1415|1617 B 1001
SEQ | | | e NOT AVAILABLE
B.40 [SOURce:]LIST:GENeration? QUERY LIST:GEN?
Syntax: Short Form: LIST:GEN? Long Form: LIST:GENeration?

Return Value: <value> (SEQ or DSEQ)

Description: Identifies the sequence for executing the list. Returns DSEQ for the default sequence, SEQ for
user determined sequence. Related Commands: LIST:GEN. (See example, Figure B-3.)

B.41 [SOURce:]LIST:QUERY COMMAND LIST.:QUER
Syntax: Short Form: LIST:QUER <int_value>
Long Form: LIST:QUERYy <int_value>
int_value = 0 to 1001
Description: Determines first location to be queried by LIST:SEQ? query. Related Commands: LIST:SEQ?.
LIST:QUER?. (See example, Figure B-3.)

B.42 [SOURce:]LIST:QUERY? QUERY LIST.QUER?

Syntax: Short Form: LIST:SEQ? Long Form: LIST:SEQuence?
Return Value: <int_value>

Description: Identifies first location to be queried by LIST:SEQ?, LIST:VOLT?, LIST:CURR?, LIST:DWEL?
qgueries. Related Commands: LIST:QUER, LIST:SEQ. (See example, Figure B-3.)

B.43 [SOURce:]LIST:SEQuence COMMAND LIST:SEQ

Syntax: Short Form: LIST:SEQ <int_value>, <int_value>, etc. to max. of 512 locations
Long Form: LIST:SEQuence <int_value>, <int_value>, etc. to max. of 512 locations
int_value = 0to 511

Description: Determines the order to execute data points of the list when LIST:GEN SEQ is issued The
LIST:SEQ command is provided for backward compatibility. It is not recommended to be used
in any new designs as it may be eliminated at some point in the future. Integer values fill the SEQ
cells of the List Sequence Table (see Table B-3) in order, starting at location 0. For example, for a list
with five points, if LIST:SEQ 4,2,1,3,0 is followed by LIST:GEN SEQ, the list will start from data point 4
(see Table B-2), then execute points 2, 1, 3, 0. (On the other hand, if LIST.GEN DSEQ is issued, data
points are executed sequentially starting at 0, then 1, 2, 3, 4.) SEQ steps can be arranged to repeat
steps in any order; for example a 17-step sequence for a list having five data points may be as follows:
LIST SEQ 0,1,2,3,4,5,4,3,2,1,0,5,5,5,1,1,1 Related Commands: LIST:GEN. LIST:DIR, LIST:COUN,
LIST:COUN:SKIP. (See example, Figure B-3.)

B.44 [SOURce:]LIST:SEQuence? QUERY LIST:SEQ?
Syntax: Short Form: LIST:SEQ? Long Form: LIST:SEQuence?
Return Value: <valuel>, <value2>, ... to <valuel6>

Description: Identifies the user-determined sequence for executing the list. Starting at location established by
LIST:QUERYy, returns comma-separated list of up to 16 values indicating the user-determined
sequence for executing the list, i.e., the contents of the SEQ locations of Table B-3. Related Com-
mands: LIST: SEQ, LIST:QUERYy. (See example, Figure B-3.)

B-12 BIT 4886 120419

B.45 [SOURce:]LIST:VOLTage COMMAND LIST:VOLT

Short Form:

Description:

LIST:VOLT[:LEV] <exp_value>, <exp_value>, . . . (to max of 1002 data points)

Long Form: LIST:VOLTage[:LEVel] <exp_value>, <exp_value>, . . . (to max of 1002 data points)
<exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1

Adds the voltage value (in Volts) to list. This command sequentially adds LIST:VOLTage values to
the main channel List Data Table locations illustrated in Table B-2. LIST.CLE sets starting location to O.
Next location indicated by LIST:VOLT:POIN? These locations correspond to the default sequence
(LIST:GEN DESQ) The maximum number of entries is 1002. Since the input buffer of the BIT 4886
has a limit of 253 characters, multiple commands are necessary to complete the full 1002 entries of
the list. If LIST:CURR has any entries, an error message: -221,"Settings conflict” is posted in the error
gueue. Related Commands: LIST:VOLT:POIN?, FUNC:MODE, LIST:CLE, *RST. (See example, Fig-
ures B-2 and B-3.)

B.46 [SOURce:]LIST:VOLTage? QUERY LIST:VOLT?

Syntax:

Description:

Short Form: LIST:VOLT? Long Form: LIST:VOLTage?
Return Value: <valuel>, <value2>, ... to <valuel6>

Identifies the parameters (main channel) entered for the list. Starting at location established by
LIST:QUERYy, returns comma-separated list of up to 16 values indicating the main channel parameters
entered. i.e., the contents of the main channel locations of Table B-2. Related Commands: LIST:
VOLT, LIST:QUERYy. If LIST:CURR has any entries, an error message: -221,"Settings conflict” is
posted in the error queue. (See example, Figure B-3.)

B.47 [SOURce:]LIST:VOLTage:POINts? QUERY LIST:VOLT:POIN?

Syntax:

Description:

Short Form: LIST:VOLT:POIN? Long Form: LIST:VOLTage:POINts?
Return Value: <value> (0 to 1001)

Identifies the total number of points in a list and the next location to be filled by LIST:VOLT
command. The LIST:VOLT pointer is initially at O via *RST or LIST:CLE. For each data point entered
by a LIST:VOLT command the list pointer is incremented If LIST:VOLT:POIN? returns 5, the
LIST:VOLT pointer is at 5 indicating there are 5 data points comprising the list (locations O though 4)
and location 5 is the next to be filled. If LIST:CURR has any entries, an error message: -221,"Settings
conflict” is posted in the error queue. Related Commands: LIST:VOLT. (See example, Figure B-3.)

B.48 [SOURce:]CURRent[:LEVel][:IMMediate][:AMPlitude] COMMAND CURR

Syntax:

Description:

Short Form: [SOUR:]CURR[:LEV][:IMM][:AMP] <exp_value>

Long Form: [SOURce:]CURRent[:LEVel][:IMMediate][:AMPIlitude] <exp_value>

<exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1

Sets programmed current level at power supply output. This command programs output current to
a specific value; actual output current will depend on load conditions. If CURR:RANG is set to 4, any
data that exceeds 1/4 of Iy ax causes error message -222 “data out range” to be posted to the error
gueue (See example, Figure B-4.)

B.49 [SOURce:]CURRent[:LEVel][:IMMediate][:AMPlitude] QUERY CURR?

Syntax:

Description:

BIT 4886 120419

Short Form: [SOUR:]CURR[:LEV][:IMM][:AMP]? MIN, MAX

Long Form: [SOURce:]CURRent[:LEVel][:IMMediate][:AMPIlitude]? MIN, MAX

Return Value:<exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1

Returns either the programmed value, maximum value, or minimum value of current. The
CURR? query returns the programmed value of current. Actual output current will depend on load con-
ditions. The CURR?MAX query returns the maximum current allowed for a particular model. CURR?
MIN returns minimum current allowed for power supply (always negative). Related Commands:
CURR. (See example, Figure B-4.)

B-13

NOTES: 1. The power supply is assumed to be operating in Voltage mode.
2 Examples below are intended only to illustrate command functions. Refer to PAR. 4.1.2 for pro-
gramming techniques to optimize performance.

OUTP ON
VOLT 21; CURR 1.5

INIT:CONT ON
INIT:CONT?

VOLT:TRIG 15;CURR:TRIG 3

Turns the output on.

Since power supply is in voltage mode, output is programmed to go to 21V,
current limit 1.5A.

Continuous triggers enabled.

Power supply returns “1.”

Power supply output programmed to return to 15V, current limit

3A upon receipt of trigger.

*TRG Power supply output returns to 15V,current limit 3A.
VOLT 21; CURR 5E-2 Power supply output programmed to go to 21V, current limit 0.05A.
MEAS:VOLT? If actual value of output voltage is 20.9V, power supply
returns 2.09E1.
MEAS:CURR? If actual value of output current is 0.0483A, power supply

FUNC:MODE CURR
VOLT 21; CURR 1.1

returns 4.83E-2.
Establishes Current mode as power supply operating mode.
Power supply programmed to voltage limit 21V, 1.1A.

CURR? Returns 1.1.

FUNC:MODE VOLT Establishes Voltage mode as power supply operating mode.

CURR:TRIG? Returns 3 (current value established by CURR:TRIG).

VOLT:-TRIG? Returns 15 (voltage value established by VOLT:TRIG).

TRIG Power supply output returns to 15V, current limit 3A.

INIT:CONT O Triggers disabled.

INIT:CONT? Power supply returns “0.”

VOLT 0 Power supply output programmed to go to OV.

MEAS:VOLT? Returns 0. (measured output voltage).

VOLT? Returns 0.(programmed output voltage).

CURR? Returns 1.5 (programmed current).

MEAS:CURR? Returns 0. (measured output current).

CURR:RANG 4 Set the current range to 1/4 of full scale. The maximum current for a 100-1
BOP is now 0.25ampere.

CURR .3 Selecting a range greater than 0.25 results in no change of output current.

CURR .2 Sets power supply to deliver 0.2 ampere at 0.024% accuracy.

CURR AUTO The power supply remains in 1/4 scale.

CURR .5 Sets the output to be 1/2 ampere in the high range.

CURR:RANG? Unit returns a 1 indicating unit range is full scale.

B.50 [SOURce:]CURRent:MODE COMMAND

Syntax:

FIGURE B-4. PROGRAMMING THE OUTPUT

CURR:MODE

Short Form: [SOUR:]JCURR:MODE (FIX | LIST | TRAN) nn
Long Form: [SOURce:]CURRent:MODE (FIXed | LIST | TRANSsient) nn
nn = <value> = time in seconds for transient

Description: Allows the user to execute or stop a list, or to execute a transient. The default mode is FIXed: the

B-14

power supply executes commands normally, and LIST commands can be issued to establish the
parameters and sequence of a list.

When CURR:MODE LIST is issued, a list is executed (See LIST commands and Figure B-3) using
the voltage limit setting that is in effect when CUIRR:MODE LIST is issued. If the list runs to comple-
tion, the settings of the next to last step of the list will be in effect and the voltage limit setting will be
unchanged. While the list is being executed, LIST:VOLT, LIST:CURR and FUNC:MODE commands
are not accepted and will produce a command error or settings conflict error.

Issuing CURR:MODE FIX while the list is running will stop the execution of the list and set the power
supply to OV and OA. The voltage limit setting will be set to OV.

BIT 4886 120419

CURR:MODE TRANSs nn causes the next CURR: command to produce a transient pulse of nn sec-
onds duration, after which the current reverts back to the previous setting (Similar to
VOLT:MODE TRANSs (see PAR. B.59 for examples). If the time nn exceeds 10 seconds, error mes-
sage -222 “data out range” is posted to the error queue. Related Commands: LIST commands. (See
example, Figures B-2 and B-3.)

B.51 [SOURce:]CURRent:MODE? QUERY CURR:MODE?

Syntax:

Short Form: [SOUR:]JCURR[:LEV]:MODE?
Long Form: [SOURce:]CURRent[:LEVel]:MODE?
Return value: FIXED or LIST or TRANS

Description: Identifies active current mode. Returns LIST while list is being executed. Returns TRANSIENT after
CURR:MODE:TRAN command has been issued, but before CURR: or *TRG command executes the
transient. Returns FIXED while in fixed (default) mode of operation. Related Commands: LIST com-
mands. (Similar to VOLT:MODE?, see Figure B-3.)

B.52 [SOURce:]CURRent:[:LEVel]RANGe COMMAND CURR:RANG

Syntax: Short Form: [SOUR:]JCURR[:LEV]:RANG <value>
Long Form: [SOURce:]CURRent[:LEVel]:RANGe <value>
<value> =1 (full scale) or 4 (1/4 scale)

Description: Allows the user to specify the operating range for control of output current. Range = 1 allows
control of output current from 0 to full scale. Range = 4 allows the full range of the 16 bit D to A con-
verter to control 1/4 of the full scale output current. This command will generate a command warning
error if the unit is not in current mode. It will be remembered until a func:mode command is processed.
(See example, Figure B-4.)

B.53 [SOURce:]CURRent:[:LEVel|RANGe? QUERY CURR:RANG?

Syntax: Short Form: [SOUR:]JCURR[:LEV]:RANG?

Long Form: [SOURce:]CURRent[:LEVel]:RANGe?
Description: Identifies programmed current range. Returns 1 (full scale) or 4 (1/4 scale) (See example, Figure

B-4.)

CURR:RANG:AUTO

B.54 [SOURce:]CURRent:[:LEVel|RANGe:AUTO COMMAND

Syntax:

Description:

Short Form: [SOUR:]JCURR[:LEV]:RANG:AUTO <boolean>

Long Form: [SOURce:]CURRent[:LEVel]:RANGe:AUTO <boolean>

<boolean> =1 (on) or 0 (off)

Allows the user to specify automatic range for control of output voltage or current. Upon power
up or upon receiving *RST, automatic ranging is selected. Automatic ranging can be turned off by
VOLT:RANG:AUTO 0, CURR:RANG:AUTO 0, VOLT:RANG 1 or 4, or CURR:RANG 1 or 4. When
automatic ranging is set, the correct range is automatically selected based on the programmed param-
eter. If the programmed parameter is more than 1/4 of nominal full scale, full scale is selected; if equal
to or less than 1/4 of full scale, the 1/4 scale range is selected. For example, if auto ranging is set for a
unit with 100V nominal output operating in voltage mode, a programmed voltage of up to 25.0V auto-
matically selects range to 1/4 scale, while programming anything above 25.0V selects full scale. Func-
tion is identical to VOLT:RANG:AUTO.

B.55 [SOURce:]CURRent[:LEVel]TRIGgered[:AMPlitude] COMMAND CURR: TRIG

Syntax:

Description:

BIT 4886 120419

Short Form: [SOUR:]CURR[:LEV]:TRIG[:AMP] <exp_value>

Long Form: [SOURce:]CURRent[:LEVel]:TRIGgered[:AMPIlitude] <exp_value>

<exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1

Programs current value to be transferred to output by *TRG or TRIG commands. This command
can be used to reset many power supplies to preselected parameters by issuing a single *TRG or
TRIG command. Actual output current will depend on load conditions. If the value exceeds the maxi-
mum for the model being programmed, error message -222,”Data out of range” is posted in output
gueue. Related Commands: CURR, *TRG, TRIG (See example, Figure B-5.)

B-15

B.56 [SOURce:]CURRent[:LEVel]TRIGgered[:AMPlitude]? QUERY CURR: TRIG?

Syntax:

Description:

Short Form: [SOUR:]CURR[:LEV]:TRIG[:AMP]?

Long Form: [SOURce:]CURRent[:LEVel]:TRIGgered[:AMPIitude]?

Return Value: <exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1
Returns the current value established by CURR:TRIG command. (See example, Figure B-5.)

NOTES: 1. The power supply is assumed to be operating in Voltage mode.
2 Examples below are intended only to illustrate command functions. Refer to PAR. 4.1.2 for pro-

*RST BOP goes to 0 volts, 0 amperes, Voltage mode.
VOLT 10;CURR 1 The voltage is placed in memory of the BOP.

No Output Changes.
OUTP ON Turns on Output, 10 Volts up to 1 ampere will be delivered.
VOLT:TRIG 1;CURR:TRIG 2 Trigger is placed in RAM.
*SAV 6 Volt 1, Current 2 and Volt mode stored in Memory location 6.
*TRG No action - Trigger control not sent.

VOLT:TRIG 3;FUNC:MODE:TRIG CURR No action - Trigger placed in RAM.

*SAV 7 Volt 3, curr 2, current mode saved in location 7

*RCL 6;VOLT:TRIG? BOP returns 1 (= 1V) (saved value of memory 6)
FUNC:MODE:TRIG? BOP returns 0 (= trigger will command voltage mode)

*RCL 6;VOLT? BOP returns 1 (output voltage now set to 1V.).

*RCL 7;:INIT;:VOLT:TRIG? Enables the trigger capability, unit returns 3 (= 3V)

*TRG The voltage is set to 3, and the unit mode changes to Current

FUNC:MODE:TRIG?;:FUNC MODE VOLT Unit switches to voltage mode. Returns 1 (= trigger will

FUNC:MODE:TRIG? Unit returns 0 indicating Voltage mode trigger in effect.

gramming techniques to optimize performance.

command current mode.

FIGURE B-5. USING RECALL AND TRIGGER FUNCTIONS

B.57 [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPlitude] COMMAND VOLT

Syntax:

Description:

Short Form: [SOUR:]VOLT[:.LEV][:IMM][:AMP] <exp_value>

Long Form: [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPIlitude] <exp_value>

<exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1

Sets programmed voltage level at power supply output. This command programs output voltage
to a specific value; actual output voltage will depend on load conditions. If the value exceeds the max-
imum for the model being programmed, error message -222,"Data out of range” is posted in output
queue. (See example, Figure B-4.

B.58 [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPlitude]? QUERY VOLT?

Syntax:

Description:

Short Form: [SOUR:]VOLT[:LEV][:IMM][:AMP]? {MIN | MAX}

Long Form: [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPlitude]? {MIN | MAX}

Identifies programmed voltage, maximum allowable voltage, or minimum voltage (always 0).
The VOLT? query returns the programmed value of voltage. Actual output voltage will depend on load
conditions. The VOLT?MAX query returns the maximum voltage allowed for a particular model.
VOLT? MIN returns minimum voltage allowed for power supply (always negative). Related Com-
mands: VOLT. (See example, Figure B-4.)

B.59 [SOURce:]VOLTage:MODE COMMAND VOLT:MODE

Syntax:

Description:

B-16

Short Form: [SOUR:]VOLT:MODE (FIX | LIST | TRAN) nn
Long Form: [SOURce:]VOLTage:MODE (FIXed | LIST | TRANSsient) nn
nn = <value> = time in seconds for transient
Allows the user to execute or stop a list, or to execute a transient. The default mode is FIXed: the
power supply executes commands normally, and LIST commands can be issued to establish the
parameters and sequence of a list.

When VOLT:MODE LIST is issued, a list is executed (See LIST commands and Figure B-3) using
the current limit setting that is in effect when VOLT:MODE LIST is issued. If the list runs to completion,
the settings of the next to last step of the list will be in effect and the current limit setting will be

BIT 4886 120419

unchanged. While the list is being executed, LIST:VOLT, LIST:CURR and FUNC:MODE commands
are not accepted and will produce a command error or settings conflict error.

Issuing VOLT:MODE FIX while the list is running will stop the execution of the list and set the power
supply to OV and OA. The current limit setting will be set to OA.

VOLT:MODE TRANSs nn causes the next VOLT: command to produce a transient pulse of nn sec-
onds duration, after which the voltage reverts back to the previous setting. E.g., VOLT:25 sets the out-
put to 25 volts, and VOLT:MODE TRAN .02 primes the unit for a transient of 0.02 seconds. When
VOLT:10 is issued, the power supply output goes to 10V for 0.02 seconds, then reverts to 25V. Simi-
larly, sending VOLT:TRIG 14, VOLT:MODE TRAN .05 and *TRG causes the output to go to 14V for
0.05 seconds, then revert to 25V. Related Commands: LIST commands. (See example, Figures B-2
and B-3.)

B.60 [SOURce:]VOLTage:MODE? QUERY VOLT:MODE?

Syntax:

Short Form: [SOUR:]VOLT[:LEV]:MODE?
Long Form: [SOURce:]VOLTage[:LEVel:MODE?
Return value: FIXED or LIST or TRANS

Description: Identifies active voltage mode. Returns LIST while list is being executed. Returns TRANSIENT after
VOLT:MODE TRAN nn command has been issued, but before VOLT: or *TRG command executes the
transient. Returns FIXED while in fixed (default) mode of operation. Related Commands: LIST com-
mands. (See example, Figure B-3.)

B.61 [SOURce:]VOLTage[:LEVel]:RANGe COMMAND VOLT.RANG

Syntax: Short Form: [SOUR:]JVOLT[:LEV]:RANG <value>
Long Form: [SOURce:]VOLTage[:.LEVel]:RANGe <value>
<value> =1 (full scale) or 4 (1/4 scale)

Description: Allows the user to specify the operating range for the active mode (either voltage or current).
When in voltage mode this command establishes the voltage range, in current mode it establishes the
current range. Range = 1 allows control of output voltage or current from O to full scale. Range = 4
allows the full range of the 16 bit D to A converter to control 1/4 of the full scale output voltage or cur-
rent to provide greater accuracy. This command overrides VOLT:RANG:AUTO and turns auto ranging
off. (Similar to CURR:RANG shown in Figure B-4.)

B.62 [SOURce:]VOLTage:[:LEVel|RANGe? QUERY VOLT:RANG?

Syntax: Short Form: [SOUR:]JVOLT[.LEV]:RANG?

Long Form: [SOURce:]VOLTage[:LEVel:RANGe?
Return value: 1 (full scale) or 4 (1/4 scale)
Description: Identifies active range. Returns 1 (full scale) or 4 (1/4 scale) (Similar to CURR:RANG? shown in Fig-

ure B-4.)

VOLT:RANG:AUTO

B.63 [SOURCce:]VOLTage:[:LEVel]RANGe:AUTO COMMAND

Syntax:

Description:

BIT 4886 120419

Short Form: [SOUR:]VOLT[.LEV]:RANG:AUTO <boolean>

Long Form: [SOURce:]VOLTage[:LEVel]:RANGe:AUTO <boolean>

<boolean> =1 (on) or O (off)

Allows the user to specify automatic range for control of output voltage or current. Upon power
up or upon receiving *RST, automatic ranging is selected. Automatic ranging can be turned off by
VOLT:RANG:AUTO 0, CURR:RANG:AUTO 0, VOLT:RANG 1 or 4, or CURR:RANG 1 or 4. When
automatic ranging is set, the correct range is automatically selected based on the programmed param-
eter. If the programmed parameter is more than 1/4 of nominal full scale, full scale is selected; if equal
to or less than 1/4 of full scale, the 1/4 scale range is selected. For example, if auto ranging is set for a
unit with 100V nominal output operating in voltage mode, a programmed voltage of up to 25.0V auto-
matically selects range to 1/4 scale, while programming anything above 25.0V selects full scale. Func-
tion is identical to CURR:RANG:AUTO.

B-17

B.64 [SOURce:]VOLTage[:LEVel]:TRIGgered[:AMPlitude] COMMAND ? VOLT: TRIG

Syntax: Short Form: [SOUR:]VOLT[:.LEV]:TRIG[:AMP] <exp_value>
Long Form: [SOURce:]VOLTage[:LEVel]:TRIGgered[:AMPIlitude] <exp_value>
<exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1

Description: Programs voltage value to be transferred to output by *TRG or TRIG commands. Actual output
voltage will depend on load conditions. If the value exceeds the maximum for the model being pro-
grammed, error message -222,"Data out of range” is posted in output queue. If value exceeds
VOLT:LIM:HIGH value, a value corresponding to the voltage limit will be programmed. (See example,
Figure B-5.)

B.65 [SOURce:]VOLTage:[:LEVel]:TRIGgered[:AMPlitude]? QUERY VOLT: TRIG?
Syntax: Short Form: [SOUR:]VOLT[:.LEV]:TRIG[:AMP]?
Long Form: [SOURce:]VOLTage[:LEVel]: TRIGgered[:AMPIlitude]?
Return Value: <exp_value> = digits with decimal point and Exponent, e.g., 2.71E1 for 27.1
Description: Returns value established by VOLT:TRIG command representing voltage value to be pro-
grammed by *TRG or TRIG command. (See example, Figure B-5.)

B.66 STATus:OPERation:CONDition QUERY STAT:OPER:COND?

Syntax: Short Form: STAT:OPER:COND? Long Form: STATus:OPERation:CONDition?
Return Value: <int_value> 0 to 1313 (1 + 32 + 256 + 1024).

Description: Returns the value of the Operation Condition Register (see Table B-4). The Operation Condition
Register contains unlatched real-time information about the operating conditions of the power supply.
Bit set to 1 = function enabled (active, true); bit reset to 0 = function disabled (inactive, false). (See
example, Figure B-6.)

TABLE B-4. OPERATION CONDITION REGISTER, OPERATION ENABLE REGISTER,
AND OPERATION EVENT REGISTER BITS

CONDITION NU CcC NU cv NU NU NU NU
CC- POWER SUPPLY IN CURRENT MODE
CV- POWER SUPPLY IN VOLTAGE MODE
BIT 15-11 10 9 8 7-6 5 4-1 0 NU NOT USED
32,768 -
VALUE 2048 1024 512 256 128 - 64 32 16 -2 1
B.67 STATus:OPERation:ENABle COMMAND STAT:OPER:ENAB

Syntax: Short Form: STAT:OPER:ENAB <int_value> 0 to 1313 (1 + 32 + 256 + 1024)
Long Form: STATus:OPERation:ENABIe <int_value> 0 to 1313 (1 + 32 + 256 + 1024)
Description: Sets Operation Enable Register. The Operation Enable Register is a mask for enabling specific bits
in the Operation Event Register which will cause the operation summary bit (bit 7) of the Status Byte
register to be set. Bit set to 1 = function enabled (active, true); bit reset to 0 = function disabled (inac-
tive, false). The operation summary bit is the logical OR of all the enabled bits in the Operation Event
register. (See example, Figure B-6.)

B.68 STATus:OPERation:ENABle? QUERY STAT:OPER:ENAB?

Syntax: Short Form: STAT:OPER:ENAB? Long Form: STATus:OPERation:ENABIle?
Return Value: <int_value> 0 to 1313 (1 + 32 + 256 + 1024).

Description: Reads Operation Enable Register (see Table B-4). Returns value of Operation Enable Register bits.
Bit set to 1 = function enabled (active, true); bit reset to 0 = function disabled (inactive, false). (See
example, Figure B-6.)

B.69 STATus:OPERation[:EVEN{]? QUERY STAT.OPER?

Syntax: Short Form: STAT.OPER[:EVEN]? Long Form: STATus:OPERation[:EVEN{]?

Return Value: <int_value> 0 to 1313 (1 + 32 + 256 + 1024).

Description: Indicates changes in conditions monitored by Operational Event Register (see Table B-4).
Returns the value of the Operation Event register. The Operation Event register is a read-only register
which holds (latches) all events that occur. Reading the Operation Event register clears it. (See exam-
ple, Figure B-6.)

B-18 BIT 4886 120419

B.70 STATus:PRESet COMMAND STAT:PRES

Syntax:
Description:

Short Form: STAT:PRES Long Form: STATus:PRESet

Disables reporting of all status events. This command sets all bits of the Operation Condition (Table
B-4) and Questionable Condition Registers to 0, preventing all status events from being reported.
(See example, Figure B-6.)

NOTES: 1. The power supply is assumed to be operating in Voltage mode.

STAT:PRES Operation Condition and Questionable Condition registers are
reset.

STAT:QUES:ENAB 12228 Allows latching of CE and VE bits.

STAT:OPER:ENAB 1280 Mask enabled for CC and CV bits.

STAT:OPER:ENAB? Returns 1280 (256 + 1024) (CC and CV bits set).

INIT:CONT ON Continuous triggers enabled.

STAT:OPER:COND? Power supply returns 256 to indicate that power

STAT:OPER? Returns 256, indicating that since the last reading of the

2 Examples below are intended only to illustrate command functions. Refer to PAR. 4.1.2 for
programming techniques to optimize performance.

supply is in Voltage mode.

Operation Event Register the power supply has entered
Voltage mode.

STAT:OPER? Returns 0 indicating no changes since previous reading of the
Operation Event register.
STAT:QUES? Returns 0 (no questionable conditions occurred since previous
reading

--- OVERCURRENT CONDITION OCCURS
SYST.ERR? Power supply returns 0,“No error” message.
*RST;:VOLT 5;CURR 1;0UTP ON The BOP is in Voltage mode and delivering 5 Volts.
*ESR? Bop returns a 0 - all functions are normal.
FUNC:MODE CURR BOP is in Current mode but Limit Light is on.
*ESR?;STAT:QUES:COND? BOP returns 8;4097 - Current error.
*ESR?;STAT:QUES? BOP returns 0;4096 - no new errors, Current Error.
*ESR?;STAT:QUES? BOP returns 0;0 - no new errors.
MEAS:CURR?;VOLT? BOP returns 1.0E-4;5.00003EO0 - Voltage is 5 volts.
STAT:QUES:COND? BOP returns 4097 - error still in effect.

Short is applied to the BOP.
*ESR?:STAT:QUES:COND? BOP returns 0;1 - Current mode is selected.
MEAS:VOLT?;CURR? BOP returns.1E-4;1.00003EO - Current is 1 amperes.
FUNC:MODE VOLT;*ESR? BOP switches mode, returns 3 - settling.
*ESR?:;STAT.QUES? BOP returns 8;8194.

Short is removed from the BOP output.
STAT:QUES:COND? BOP returns 2, voltage mode operation OK.

FIGURE B-6. USING STATUS COMMANDS AND QUERIES
B.71 STATus:QUEStionable[:EVENt]? QUERY STAT.QUES?
Syntax: Short Form: STAT:QUES[EVEN]? Long Form: STATus:QUEStionable[EVENT]?
Return Value: <int_value> actual register value
Description: Indicates the latched condition of the Questionable Event register. Returns the value of the

BIT 4886 120419

Questionable Event register (see Table B-5). The Questionable Event register is a read-only register
which holds (latches) all events. Only bits 13 and 12 are latched in the Status Questionable Event reg-
ister. Bits 0 and 1 of the Status Questionable Condition Register are not latched in the power supply.
Reading the Questionable Event register clears it. (See example, Figure B-6.)

B-19

TABLE B-5. QUESTIONABLE EVENT REGISTER, QUESTIONABLE CONDITION REGISTER
AND QUESTIONABLE CONDITION ENABLE REGISTER BITS

CONDITION NU CE VE NU CM | VM
CE CURRENT ERROR
VE VOLTAGE ERROR
BIT 15-14 13 12 1-2 1 0 CM CURRENT MODE
VM VOLTAGE MODE
VALUE 32,768 -16,359 | 8192 | 4096 | 2048 - 4 2 1 NU NOT USED

B.72 STATus:QUEStionable:CONDition? QUERY STAT.QUES:COND?

Syntax: Short Form: STAT:QUES:COND? Long Form: STATus:QUEStionable:CONDition?
Return Value: <int_value> actual register value

Description: Returns the value of the Questionable Condition Register (see Table B-5). The Questionable
Condition Register contains unlatched real-time information about questionable conditions of the
power supply. Bit set to 1 = condition enabled (active, true); bit reset to 0 = condition disabled (inac-
tive, false). Bits 1 or 0 may be both be set, indicating the power supply is settling after a voltage
change. (See example, Figure B-6.)

B.73 STATus:QUEStionable:ENABlIe COMMAND STAT.QUES:ENAB

Syntax: Short Form: STAT:QUES:ENAB <int_value> Long Form: STATus:QUESionable:ENABIe <int_value>

Description: Programs Questionable Condition Enable Register (see Table B-5). The Questionable Condition
Enable Register determines which conditions are allowed to set the Questionable Condition Register;
it is a mask for enabling specific bits in the Questionable Event register that can cause the question-
able summary bit (bit 3) of the Status Byte register to be set. The questionable summary bit is the log-
ical OR of all the enabled bits in the Questionable Event register. Bit set to 1 = function enabled
(active, true); bit reset to 0 = function disabled (inactive, false). (See example, Figure B-6.)

B.74 STATus:QUEStionable:ENABIe? QUERY STAT.QUES:ENAB?

Syntax: Short Form: STAT:QUES:ENAB? Long Form: STATus:QUESionable:ENABIe?
Return Value: <int_value> actual register value

Description: Reads Questionable Condition Enable Register (see Table B-5). Power supply returns value of
Questionable Condition Enable Register, indicating which conditions are being monitored. Bit set to 1
= function enabled (active, true); bit reset to 0 = function disabled (inactive, false). Related Com-
mands: STAT:QUES?. (See example, Figure B-6.)

B.75 SYSTem:BEEP COMMAND SYST:BEEP

Syntax: Short Form: SYST:BEEP Long Form: SYSTem:BEEP
Description: Causes the unit to emit a brief audible tone.

B.76 SYSTem:COMMunication:SERial:ECHO COMMAND SYST:COMM:SER:ECHO

Syntax: Short Form: SYST:COMM:SER:ECHO {ON | OFF}

Long Form: SYSTem:COMMunication:SERial:ECHO {ON | OFF}

Description: Enables (ON) or disables (OFF) echo mode (see PAR. 4.5.2.1) Sending ON causes all subsequent
characters to be echoed back. Sending OFF turns off the character echo after the next line terminator
character. The *RST command has no effect on echo status. See PAR. 4.1.2 and Figure 4-1 for spe-
cial programming considerations.

B.77 SYSTem:COMMunication:SERial:ECHO? QUERY SYST:COMM:SER:ECHO?

Syntax: Short Form: SYST:.COMM:SER:ECHO?
Long Form: SYSTem:COMMunication:SERial:ECHO?
Return Value: {ON | OFF}
Description: Identifies whether echo mode is active (ON) or disabled (OFF) (see PAR. 4.5.2.1).

B.78 SYSTem:COMMunication:SERial:PACE COMMAND SYST:COMM:SER:PACE

Syntax: Short Form: SYST.COMM:SER:PACE {NONE | XON}
Long Form: SYSTem:COMMunication:SERial:PACE {NONE | XON}

Description: Enables (XON) or disables (NONE) data flow control via the serial interface (see PAR. 4.5.2.2).
See PAR. 4.1.2 and Figure 4-1 for special programming considerations.

B-20 BIT 4886 120419

B.79 SYSTem:COMMunication:SERial:PACE? QUERY SYST:COMM:SER:PACE?

Syntax: Short Form: SYST.COMM:SER:PACE {NONE | XON}
Long Form: SYSTem:COMMunication:SERial:PACE {NONE | XON}
Return Value: {XON | NONE}

Description: Identifies whether data flow control via the serial interface is enabled (XON) or disabled
(NONE) (see PAR. 4.5.2.2). See PAR. 4.1.2 and Figure 4-1 for special programming considerations.

B.80 SYSTem:ERRor? QUERY SYST:ERR?

Syntax: Short Form: SYST.ERR? Long Form: SYSTem:ERRor?
Return Value: <int_value,string>

Description: Posts error messages to the output queue. Returns the next error number followed by its corre-
sponding error message string from the instrument error queue. The error queue is a FIFO (first in,
first out) buffer that stores errors as they occur. As it is read, each error is removed from the queue
and the next error message is made available. When all errors have been read, the query returns
0,”No error”. If more errors are accumulated than the queue can hold, it will overflow. The oldest errors
stay in the queue but the most recent errors are discarded. The last error in the queue will be
-350,"Too many errors.” Error messages are defined in Table B-6.

B.81 SYSTem:ERRor:CODE? QUERY SYST:ERR:CODE?

Syntax: Short Form: SYST:ERR:CODE?] Long Form: SYSTem:ERRor:CODE?
Description: Returns the three character error code without the ASCII definition string. The error codes are
defined in table B-6 (See example, Figure B-8.)

B.82 SYSTem:ERRor:CODE:ALL? QUERY SYST:ERR:CODE:ALL?

Syntax: Short Form: SYST.ERR:CODE:ALL?] Long Form: SYSTem:ERRor:CODE:ALL?
Return Value:

Description: Returns a comma-separated list of all error codes. A maximum of 15 codes will be returned; if the
gueue is empty, the power supply returns 0.

B.83 SYSTem:PASSword:CENable COMMAND SYST:PASS:CEN

Syntax: Short Form: SYST:PASS:CEN <val>
Long Form: SYSTem:PASSword:CENable <val>

Description: Sets the password enable state if the value matches the current password. This command allows
other commands such as DIAG:SAV and CALibrate to operate.

B.84 SYSTem:PASSword:CDISable COMMAND SYST:PASS:CDIS

Syntax: Short Form: SYST:PASS:CDIS <val> Long Form: SYSTem:PASSword:CDISable <val>
Description: Clears the password enable state if the <value> matches the current password.

B.85 SYSTem:PASSword:NEW COMMAND SYST:PASS:NEW

Syntax: Short Form: SYST:PASS:NEW <old password>,<new password>
Long Form: SYSTem:PASSword:NEW <old password>,<new password>

Description: Establishes new password. The old (current) password is checked, then replaced by the new pass-
word. (See example, Figure B-8.)

B.86 SYSTem:PASSword:STATe? QUERY SYST:PASS:STAT?

Syntax: Short Form: SYST:PASS:STAT? Long Form: SYSTem:PASSword:STATe?
Return Value: <int_value> 0 or 1
Description: Returns a 1 if the password state is enabled or a O if it is disabled.

B.87 SYSTem:REMote COMMAND SYST:REM

Syntax: Short Form: SYST:REM {ON | OFF} or {1 | 0}
Long Form: SYSTem:REMote {ON | OFF} or {1 | 0}

Description: Used during serial (RS 232) communication to set the unit to remote (1 or ON) or local (0 or

OFF) mode. This command must be issued prior to commands that affect the power supply output
(e.g., VOLT 10;:OUTP ON) to ensure the unit is in remote mode. See PAR. 4.5.3 and Figure B-7.

BIT 4886 120419 B-21

SYST:REM?

B.88 SYSTem:REMote? QUERY

Syntax: Short Form: SYST:REM?
Return Value: {1 | 0}

Long Form: SYSTem:REMote?

Description: Identifies whether unit it in remote mode (1) or local mode (0) during serial (RS 232) communi-
cation. See PAR. 4.5.3 and Figure B-7.

B.89 SYSTem:SECurity:IMMediate COMMAND SYST:SEC:IMM

Syntax: Short Form: SYST:SEC:IMM Long Form: SYSTem:SECurity:IMMediate
Description: Initializes all NVRAM variables to factory defaults. Empties all memory locations.

*IDN? Unit responds with KEPCO,BOP 20-20,E1234,1.66 (typical).
OUTP? Unit responds with O indicating output is off

SYST:REM? Unit responds with O indicating unit is in local mode.

SYST.REM 1 PUTS UNIT IN REMOTE MODE.

OUTP ON Enables output

OUTP? Unit responds with 1 (output on).

SYST:REM 0 Unit set to local mode.

FIGURE B-7. SETTING THE UNIT TO REMOTE MODE VIA SERIAL (RS 232) PORT

TABLE B-6. ERROR MESSAGES

ERROR MESSAGE

ESR ERROR BIT SET
(SEE PAR. A.5)

EXPLANATION

0,“No error”

None

No error

-100,“Command error”

Command Error bit 5

Command and data understood, but more information included which is
not recognized.

-120,”Numeric data error”

Command Error bit 5

Expected number but other characters were detected.

-203,”Command Protected”

Execution error bit 4

Password must be CENAbled.

-221,”Settings Conflict”

Execution error bit 4

Calibration state not enabled but CALibrate command received; or
LIST:DIR set to DOWN.

-222,“Current, Voltage or
Data out of range”

Execution error bit 4

Value (current or voltage) exceeds power supply rating or (data)
exceeds acceptable command parameters.

-223,“Too Much Data”

Execution error bit 4

During a LIST command, the list became full, preventing all the data
from being added to the list.

-226,“Lists not same length”

Execution error bit 4

During a LIST command, number of DWEL list entries was not equal to
1 and did not match number of LIST:VOLT or LIST:CURR entries.

-240,“Hardware error”

Execution error bit 4

Power supply did not respond to command.

-301,”Voltage Error”

Device Error bit 3

Voltage output not within error window; unit set to output off -- only valid
for DIAG:ERR 1, 2 or 3 mode (see PAR. 4.7.1 and Table 4-5).

-302,”Current Error”

Device Error bit 3

Current output not within error window; unit set to output off -- only valid
for DIAG:ERR 1, 2 or 3 mode (see PAR. 4.7.1 and Table 4-6).

-311,”Memory Error”

Device Error bit 3 (1

*SAV (save), *RCL (recall), or CALibrate:STORe error.

-350,”Queue Overflow”

Device Error bit 3

Error queue was full, error events have been lost.

-400,”QueryError”

Query Error bit 2

Data requested was lost due to 253 character limit of BIT 4886 output
buffer.

-420,”Query Unterminated”

Query Error bit 2

Controller sent query but did not accept data from power supply. See
VOLT? (PAR. B.58), CAL:SAVE (PAR. B.58) commands

@

age condition.

The Device error bit may be set when the status monitoring functions of the power supply detect an overvoltage/undervolt-

B-22

BIT 4886 120419

B.90 SYSTem:SET COMMAND SYST:SET
Syntax: Short Form: SYSTem:SET {CM0 | CM1 | DCO | DC1 | LFO | LF1 | ROO | RO1}

Long Form:

SYSTem:SET {CMO | CM1 | DCO | DC1 | LFO | LF1 | ROO | RO1}

Description: Establishes Device Clear, Line Feed, and Reset functions. Sending SYST:SEC:IMM sets LF1,
DCO, and ROO (as if CMO was sent)

DCO Device Clear functions per IEEE 488.2 Standard: No effect on the device (power supply),
only clears internal status registers.

DC1 Device Clear functions identical to *RST: Output set to 0V, voltage mode and output set to
OFF except if RO1 (see below) is set.

LFO Line Feed not provided upon empty buffer condition.

LF1 Line Feed provided if buffer is empty and a read is performed.

ROO *RST and power up set output to OFF, OV, 0A, voltage mode.

RO1 *RST sets output to ON, 0V, 0A, voltage mode. Subsequent VOLT and CURR commands
are immediately present at the output without sending OUTP ON (OUTP OFF and OUTP
ON function normally to turn the output off or on).

CMO Establishes DCO, LFO, ROO conditions described above (SCPI 1997 Standard compli-
ance).

CM1 Establishes DC1, LF1, RO1 conditions described above. (Compatible with software ver-
sions 1.2 and earlier.) (See example, Figure B-8.)

B.91 SYSTem:SET? QUERY SYST:SET?
Syntax: Short Form: SYST:SET? Long Form: SYSTem:SET?

Return Value: DC<n>,LF<n>,RO<n>wheren=0o0r 1
Description: Identifies functions established by SYST:SET command. (See example, Figure B-8.)

B.92 SYSTem:VERSion? QUERY SYST:VERS?

Syntax: Short Form: SYST:.VERS? Long Form: SYSTem:VERSion?
Return Value: <int_value>.<int_value> (YYYY.V)

Description: Identifies SCPI Version implemented. Returns SCPI Version number:
YYYY =year, V = Revision number for specified year. (See example, Figure B-8.)

SYST.VERS? Unit returns 1997

SYST.:SET? Unit returns DCO,LFO,RLO

SYST:PASS:NEW DEFAULT,OKAY Unit changes password to be OKAY

SYST:SET LF1,RL1,DC1 Configures BIT 4886 card as BIT 4882 (see PAR. 1.3.1).
DIAG:SAV;:SYST.ERR:CODE? BOP returns -231 indicating command is protected
SYST:PASS:CEN OKAY Password enabled commands are accepted

DIAG:SAV Unit saves the LF1 state for next power on cycle.

BIT 4886 120419

FIGURE B-8. USING SYSTEM COMMANDS AND QUERIES

B-23/(B-24Blank)

	SECTION 1 - INTRODUCTION
	SECTION 2 - INSTALLATION
	SECTION 3 - CALIBRATION
	SECTION 4 - OPERATION
	APPENDIX A - SCPI COMMON COMMAND/QUERY DEFINITIONS
	APPENDIX B - SCPI COMMAND/QUERY DEFINITIONS

	SECTION 1 - INTRODUCTION
	1.1 Scope of Manual
	1.2 General Description
	TABLE 1-1. Applicability of BIT 4886 Cards to Specific BOP Models
	1.2.1 Measurements
	1.2.2 Enhanced Operation
	1.3 Specifications
	TABLE 1-2. BOP Voltage Specifications with BIT 4886 Installed
	TABLE 1-3. BOP Current Specifications with BIT 4886 Installed
	TABLE 1-4. Specifications, BIT 4886
	1.3.1 BIT 4882 Compatibility
	TABLE 1-5. Command Differences for BIT 4886 card Configured as BIT 4882

	SECTION 2 - INSTALLATION
	2.1 Unpacking and Inspection
	TABLE 2-1. Items Supplied
	2.2 Set Start-up Defaults
	2.2.1 Set (GPIB) Device Address
	2.2.2 Power Supply Identification
	FIGURE 2-1. BIT 4886 Switch Locations
	TABLE 2-2. Device Address Selection
	2.3 Installation of Interface Card into the BOP
	FIGURE 2-2. Installation of Model BIT 4886 into BOP
	2.4 Input/Output Signals
	TABLE 2-3. Input/Output Pin Assignments
	FIGURE 2-3. IEEE 488 (GPIB) Connector
	TABLE 2-4. RS232C PORT Input/Output Pin Assignments
	TABLE 2-5. RJ45 to DB9 Adapter Wire Functions
	FIGURE 2-4. RJ45 to DB9 Adapter Wiring
	2.5 GPIB Connections
	2.6 RS 232 Connections
	2.7 Initial Check-out Procedure

	SECTION 3 - CALIBRATION
	3.1 Equipment Required
	FIGURE 3-1. BOP Power Supply, Internal Calibration Control Locations
	FIGURE 3-2. Current Shunt Connections
	3.2 Calibration of BIT 4886 Interface Card
	TABLE 3-1. Calibration Measurements and Tolerances - Voltage
	TABLE 3-2. Calibration Measurements and Tolerances - Current
	TABLE 3-3. Suggested Sense Resistors
	3.2.1 Manual calibration
	3.2.2 Calibration Using IVI Driver
	TABLE 3-4. VISA Resource String Corresponding to Interface
	3.2.2.1 Setup
	FIGURE 3-3. Input VISA Resource Descriptor
	FIGURE 3-4. Main Control Panel, Typical for BOP 100-1M with BIT 4886
	3.2.2.2 Main Control Panel
	3.2.2.3 Calibration Controls
	FIGURE 3-5. Calibration Controls
	TABLE 3-5. Calibration Panel Functions
	3.2.2.4 Calibration Procedure
	FIGURE 3-6. Password Entry
	FIGURE 3-7. Voltage Calibration

	SECTION 4 - OPERATION
	4.1 General
	4.1.1 Programming Techniques to Optimize Power Supply performance
	4.1.1.1 Setting BOP Voltage and Current Limits
	4.1.1.2 Automatic Range Operation.
	4.1.1.3 Using the BIT 4886 to Produce a Software-timed Ramp at the BOP Output
	4.1.2 Making Sure the Previous Command is Complete
	FIGURE 4-1. Programming Example to Verify Previous Command has Completed
	4.2 Initialization of the BIT 4886 Card
	4.2.1 Initialization using CVI Driver - GPIB Port Only
	FIGURE 4-2. VISA Driver Start-up
	FIGURE 4-3. BIT 4886 Card Initialization using VISA Driver
	4.2.2 Initialization using SCPI Commands and GPIB Port
	4.2.3 Initialization using SCPI Commands and RS 232 Port
	4.2.4 Password Setup.
	4.3 Built in Test
	4.3.1 Power-up Test
	4.3.2 Confidence Test
	TABLE 4-1. Built-in test Error Codes
	4.3.3 BOP test
	4.4 IEEE 488 (GPIB) Bus Protocol
	TABLE 4-2. IEEE 488 (GPIB) Bus Interface Functions
	4.5 RS232-C Operation
	TABLE 4-3. IEEE 488 (GPIB) Bus Command Mode Messages
	TABLE 4-4. IEEE 488 (GPIB) Bus Data Mode Messages
	4.5.1 Serial INterface
	4.5.2 RS 232 Implementation
	FIGURE 4-4. RS 232 Implementation
	4.5.2.1 Echo Mode
	4.5.2.2 XON XOFF Method
	4.5.2.3 Isolating RS 232 Communication Problems
	4.5.3 Using SCPI commands for RS 232 Communication.
	4.6 SCPI Programming
	4.6.1 SCPI Messages
	4.6.2 Common Commands/Queries
	4.6.3 SCPI Subsystem Command/Query Structure
	FIGURE 4-5. Tree Diagram of SCPI Commands Used with BIT 4886 Interface Card
	4.6.3.1 Initiate Subsystem
	4.6.3.2 Measure Subsystem
	4.6.3.3 [Source:]Voltage and [Source:]Current Subsystems
	4.6.3.4 Output Subsystem
	4.6.3.5 List Subsystem
	4.6.3.5.1 Required LIST Commands
	4.6.3.5.2 Other Required Commands
	4.6.3.5.3 Other Useful Commands
	4.6.3.5.4 Optional Commands
	4.6.3.6 Status Subsystem
	4.6.3.7 System Subsystem
	4.6.4 Program Message Structure
	FIGURE 4-6. Message Structure
	4.6.4.1 Keyword
	4.6.4.2 Keyword Separator
	4.6.4.3 Query Indicator
	4.6.4.4 Data
	4.6.4.5 Data Separator
	4.6.4.6 Message Unit Separator
	4.6.4.7 Root Specifier
	4.6.4.8 Message Terminator
	4.6.5 Understanding The Command Structure
	4.6.6 Program Message Syntax Summary
	4.6.7 SCPI Program Example
	FIGURE 4-7. Typical Example of Interface Card Program Using SCPI Commands
	4.7 Enhanced Operation
	4.7.1 Error Detection
	4.7.2 Limit Channel Control
	4.7.3 Using and Saving System Variables
	4.7.4 Flash Memory EEPROM Operation
	TABLE 4-5. Enhanced Operation - Error Response
	4.7.4.1 Calibration Storage
	TABLE 4-6. Calibration Storage

	APPENDIX A - SCPI COMMON COMMAND/QUERY DEFINITIONS
	TABLE A-1. IEEE 488.2 Command/query Index
	A.2 *CLS — Clear Status Command
	A.3 *ESE — Standard Event Status Enable Command
	TABLE A-2. Standard Event Status Enable Register and Standard Event Status Register Bits
	A.4 *ESE? — Standard Event Status Enable Query
	A.5 *ESR? — Event Status Register Query
	A.6 *IDN? — Identification Query
	A.7 *OPC — Operation Complete Command
	FIGURE A-1. GPIB Commands
	A.8 *OPT? — Options Query
	A.9 *RCL — Recall Command
	A.10 *RST — Reset Command
	A.11 * SAV — Save Command
	A.12 *SRE — Service Request Enable Command
	TABLE A-3. Service Request Enable and Status Byte Register Bits
	A.13 *SRE? — Service Request Enable Query
	A.14 *STB? — Status Byte Register Query
	A.15 *TRG — Trigger Command
	A.16 *TST? — Self Test Query
	A.17 *WAI — Wait-To-Continue Command

	APPENDIX B - SCPI COMMAND/QUERY DEFINITIONS
	B.1 Introduction
	TABLE B-1. SCPI Subsystem Command/query Index
	B.2 Numerical Values
	B.3 CALibrate:CPRotect Command
	B.4 CALibrate:STATus Command
	B.5 CALibrate[:STATus]? Query
	FIGURE B-1. Using Calibration Commands and Queries
	B.6 CALibrate:CURRent Command
	B.7 CALibrate:DATA Command
	B.8 CALibrate:DPOT Command
	B.9 CALibrate:LCURR Command
	B.10 CALibrate:LVOLT Command
	B.11 CALibrate:SAVE Command
	B.12 CALibrate:VOLTage Command
	B.13 CALibrate:VPRotect Command
	B.14 CALibrate:ZERO Command
	B.15 INITiate[:IMMediate] Command
	B.16 INITiate:CONTinuous Command
	B.17 INITiate:CONTinuous Query
	B.18 MEASure[:SCALar]:CURRent[:DC]? Query
	B.19 MEASure[:VOLTage][:SCALar][:DC]? Query
	B.20 OUTPut[:STATe] Command
	B.21 OUTPut[:STATe] Query
	B.22 [SOURce:]FUNCtion:MODE Command
	B.23 [SOURce:]FUNCtion:MODE? Query
	B.24 [SOURce:]FUNCtion:MODE:TRIGger
	B.25 [SOURce:]FUNCtion:MODE:TRIGger? Query
	B.26 [SOURce:]LIST:CLEar Command
	B.27 [SOURce:]LIST:COUNt Command
	B.28 [SOURce:]LIST:COUNt? Query
	B.29 [SOURce:]LIST:COUNt:SKIP Command
	B.30 [SOURce:]LIST:COUNt:SKIP? Query
	B.31 [SOURce:]LIST:CURRent Command
	TABLE B-2. List Data Table
	B.32 [SOURce:]LIST:CURRent? Query
	B.33 [SOURce:]LIST:CURRent:POINts? Query
	B.34 [SOURce:]LIST:DIRection Command
	B.35 [SOURce:]LIST:DIRection? Query
	B.36 [SOURce:]LIST:DWELl Command
	B.37 [SOURce:]LIST:DWELl? Query
	B.38 [SOURce:]LIST:DWELl:POINts? Query
	FIGURE B-2. Using LIST Commands for Sawtooth and Triangle Waveforms
	FIGURE B-3. Using LIST Commands and Queries
	B.39 [SOURce:]LIST:GENeration Command
	TABLE B-3. List Sequence Table
	B.40 [SOURce:]LIST:GENeration? Query
	B.41 [SOURce:]LIST:QUERy Command
	B.42 [SOURce:]LIST:QUERy? Query
	B.43 [SOURce:]LIST:SEQuence Command
	B.44 [SOURce:]LIST:SEQuence? Query
	B.45 [SOURce:]LIST:VOLTage Command
	B.46 [SOURce:]LIST:VOLTage? Query
	B.47 [SOURce:]LIST:VOLTage:POINts? Query
	B.48 [SOURce:]CURRent[:LEVel][:IMMediate][:AMPlitude] Command
	B.49 [SOURce:]CURRent[:LEVel][:IMMediate][:AMPlitude] Query
	FIGURE B-4. Programming the Output
	B.50 [SOURce:]CURRent:MODe Command
	B.51 [SOURce:]CURRent:MODE? Query
	B.52 [SOURce:]CURRent:[:LEVel]RANGe Command
	B.53 [SOURce:]CURRent:[:LEVel]RANGe? Query
	B.54 [SOURce:]CURRent:[:LEVel]RANGe:AUTO Command
	B.55 [SOURce:]CURRent[:LEVel]TRIGgered[:AMPlitude] Command
	B.56 [SOURce:]CURRent[:LEVel]TRIGgered[:AMPlitude]? Query
	FIGURE B-5. Using Recall and Trigger Functions
	B.57 [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPlitude] Command
	B.58 [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPlitude]? Query
	B.59 [SOURce:]VOLTage:MODE Command
	B.60 [SOURce:]VOLTage:MODE? Query
	B.61 [SOURce:]VOLTage[:LEVel]:RANGe Command
	B.62 [SOURce:]VOLTage:[:LEVel]RANGe? Query
	B.63 [SOURce:]VOLTage:[:LEVel]RANGe:AUTO Command
	B.64 [SOURce:]VOLTage[:LEVel]:TRIGgered[:AMPlitude] Command
	B.65 [SOURce:]VOLTage:[:LEVel]:TRIGgered[:AMPlitude]? Query
	B.66 STATus:OPERation:CONDition Query
	TABLE B-4. Operation Condition Register, Operation Enable Register, and Operation Event Register Bits
	B.67 STATus:OPERation:ENABle Command
	B.68 STATus:OPERation:ENABle? Query
	B.69 STATus:OPERation[:EVENt]? Query
	B.70 STATus:PRESet Command
	FIGURE B-6. Using Status Commands and Queries
	B.71 STATus:QUEStionable[:EVENt]? Query
	TABLE B-5. Questionable Event Register, Questionable Condition Register and Questionable Condition Enable Register Bits
	B.72 STATus:QUEStionable:CONDition? Query
	B.73 STATus:QUEStionable:ENABle Command
	B.74 STATus:QUEStionable:ENABle? Query
	B.75 SYSTem:BEEP Command
	B.76 SYSTem:COMMunication:SERial:ECHO Command
	B.77 SYSTem:COMMunication:SERial:ECHO? Query
	B.78 SYSTem:COMMunication:SERial:PACE Command
	B.79 SYSTem:COMMunication:SERial:PACE? Query
	B.80 SYSTem:ERRor? Query
	B.81 SYSTem:ERRor:CODE? Query
	B.82 SYSTem:ERRor:CODE:ALL? Query
	B.83 SYSTem:PASSword:CENable Command
	B.84 SYSTem:PASSword:CDISable Command
	B.85 SYSTem:PASSword:NEW Command
	B.86 SYSTem:PASSword:STATe? Query
	B.87 SYSTem:REMote Command
	B.88 SYSTem:REMote? Query
	B.89 SYSTem:SECurity:IMMediate Command
	FIGURE B-7. Setting the Unit to Remote Mode via Serial (RS 232) Port
	TABLE B-6. Error Messages
	B.90 SYSTem:SET Command
	B.91 SYSTem:SET? Query
	B.92 SYSTem:VERSion? Query
	FIGURE B-8. Using System Commands and Queries

